
GAUSSX
TM

ECONOTRON SOFTWARE, INC.

Version 10.1

Jon Breslaw

January, 2011

The contents of this manual is subject to change without notice, and does not represent
a commitment on the part of Econotron Software, Inc. The software described in this
document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose other than the purchaser’s personal use without the
prior written permission of Econotron Software.

Copyright c© 1989-2011 Econotron Software, Inc.
All Rights Reserved

GAUSS and GAUSS–Light are trademarks of Aptech Systems, Inc.
GAUSSX is a trademark of Econotron Software, Inc.
Maple is a trademark of Waterloo Maple, Inc.

Support:

Econotron Software

447 Grosvenor Ave.

Westmount, P.Q. Canada

H3Y-2S5

Tel: (514) 939-3092

Fax: (514) 938-4994

Eml: support@econotron.com

Web: http://www.econotron.com

ii

Contents

Contents

1 Concept

1.1 Overview . i

2 Installation and Configuration

2.1 Installing GAUSSX . i

2.1.1 GAUSSX for Windows . i

2.1.2 GAUSSX for UNIX and MAC . ii

2.1.3 Installing GAUSSX manually . iii

2.2 Configuring GAUSSX for Windows . iii

2.2.1 GAUSSX mode . iii

2.2.2 Precision . iii

2.2.3 Projects . iv

2.2.4 Configuration File . iv

2.2.5 Performance . iv

2.2.6 Network support . v

2.2.7 Student version . v

2.3 Configuring GAUSSX for UNIX . v

2.3.1 UNIX configuration file . v

2.3.2 Network support . vi

2.3.3 Porting PC files . vi

3 Running GAUSSX under Windows

3.1 Quick Start . i

3.2 Project Options . ii

3.2.1 Overview . ii

3.2.2 Files . ii

3.2.3 Options . iii

3.2.4 Commands . iv

iii

3.2.5 Configuration . iv

3.2.6 Navigation . v

3.3 GAUSSX Commands . v

3.4 GAUSSX Tools . vi

3.5 Batch mode . vii

4 Running GAUSSX under UNIX

4.1 UNIX menu . i

4.2 Quick Start . ii

4.3 Batch mode . ii

5 GAUSSX Commands - Syntax and Summary

5.1 Syntax . i

5.2 Variable names . ii

5.3 Summary . ii

5.3.1 Data creation and handling . iii

5.3.2 Descriptive . iv

5.3.3 Formula definition . iv

5.3.4 Estimation methods . v

5.3.5 Processes . vi

5.3.6 Bitwise Commands . vii

5.3.7 Statistical Commands . viii

5.3.8 Finance/Economics Commands . viii

5.3.9 In-Line commands . ix

5.3.10 Support Functions . x

5.3.11 Miscellaneous . xi

5.4 Display Options . xii

5.5 Reference Syntax . xii

6 GAUSSX Reference

iv

Contents

A Appendices

A.1 Error Processing . ii

A.2 Installing New Procedures . iv

A.3 Mixing GAUSS and GAUSSX . v

A.4 Running GAUSS Application Modules . vii

A.5 Automatic Differentiation . ix

A.6 Support Functions . xi

A.7 Trouble Shooting . xv

A.7.1 Windows . xv

A.7.2 UNIX . xv

A.8 Statlib Reference . xvii

B Index

v

Concept 1
1.1 Overview

There now exist a substantial number of statistical packages that are capable of being run both on
Windows and UNIX platforms. An ideal package is fast, flexible and fun. Traditional packages, such
as SPSS, SAS etc, are relatively easy to use, since they are command driven. However, they are not
particularly flexible, in the sense that if a particular procedure is not implemented by the package
(eg. Tobit) then it is not usually possible for the user to add such a procedure. At the other extreme,
one can write statistical procedures for oneself in C or FORTRAN. This provides a great deal of
flexibility, and can be relatively fast, since one can dispense with overhead. On the other hand, it is
definitely not fun.

GAUSS is a programming language which starts to come close to the ideal. It provides the power,
speed, and flexibility of a compiled language, such as C, while being easy to learn and use. It is
also flexible, in that the user can program in GAUSS to implement any statistical procedure. Thus
GAUSS is a distinct improvement over other existing statistical packages.

However, for many potential GAUSS users, the overhead involved in setting up the various modules,
and learning the GAUSS programming language is significant, especially if their previous program-
ming skills heave been restricted to high level languages. And even for experienced GAUSS users,

1-1

there is a considerable cost in putting together code each time in order to undertake a particular
task, while also having to concern oneself with file manipulation, etc. Put another way, it is still
considerably easier to program in a higher level language than in a lower level language.

GAUSSX rectifies this situation, by acting as a shell for running GAUSS. It is very easy to use, since
no GAUSS programming nor file management knowledge is required. Indeed, this ease of operation
means that GAUSSX is useful not only to users who are new to GAUSS , but also to experienced
GAUSS programmers. Under UNIX or MAC, GAUSSX runs as an application, while the Windows
version provides a Project Options screen with additional menu items and tools.

While new users can run GAUSSX without any knowledge of GAUSS, all of the data transformation
commands that are available to GAUSS are also available to GAUSSX, and thus the new user is eased
into GAUSS as his/her needs grow. For experienced GAUSS users, the ability to modify GAUSSX,
or to add modules to GAUSSX, makes GAUSSX the preferred environment for running GAUSS. In
addition, the GAUSS Application Modules can also be run from GAUSSX. For pedagogical use,
GAUSSX can be used to teach econometrics, without the problem of the student spending all of his
or her time learning programming, and not econometrics.

Most of the GAUSSX commands are similar to those found in TSP. GAUSSX supports data input
either coded in the command file (LOAD), or through reading external files, in either ASCII, spread
sheet, or GAUSS format. Data transformation (GENR) is limited only by the GAUSS command
set—almost anything. COVA generates descriptive statistics, SVD, and correlograms, while TABU-

LATE provides statistics in a cross-tab format. PRINT, PLOT, and GRAPH commands are supported.
Sample selection (SMPL) is supported either directly, or logically, and missing values are handled
automatically. A full range of linear single and multiple estimation methods are available, includ-
ing ARIMA, EXSMOOTH, KALMAN, PANEL, QR and ROBUST. Diagnostics are provided for most
single equation methods. Non linear estimation methods include FIML, GMM, ML, NLS, non linear
2SLS and 3SLS, and transfer functions. Linear and non-linear parameter constraints are available
for all non-linear estimation routines. A large range of processes are provided for ML estimation,
including univariate and multivariate garch, MNL, MNP, neural networks, non-parametric, duration
models, Kalman filter, ARFIMA, and stochastic volatility process.

Forecasting methods include both static and dynamic forecast (FORCST), and dynamic solutions
for systems of non-linear equations (SOLVE). About 20 specification tests are available using the
TEST command including specification, cointegration and decomposition tests, as well as 12 non-
parametric tests. Monte Carlo simulation is supported using MCS, and Bayesian estimation using
MCMC. Since GAUSS and GAUSSX code can be intertwined, comments, logical goto, and looping,
as well as any legal GAUSS commands are permitted.

1-2

Concept

While GAUSSX takes care of the econometrics, it also provides a number of utilities that facilitate
housekeeping. One such utility is project management control. If one is involved in a number of
different tasks (or projects), it becomes tedious changing the path and file names each time one
changes projects. Each project has a unique name, and specifies the files and paths associated with
that project. This way, you don’t have to bother with remembering which files are associated with
each project. Project management can be used for both GAUSSX and GAUSS projects.

GAUSSX is flexible – you can run it the way you want to. The screen can be toggled on or off, so can
the printer. The output file can include the program listing first, if you wish. And of course context
sensitive hypertext help is provided in Windows. Graphic support uses the Publication Quality
Graphics package, or, if installed, the GAUSSPlot package. Data conversion between foreign file
types and GAUSS format is also provided. Access to econometric links on the web - both data and
code - is facilitated directly from GAUSS. GAUSSX also provides links to other installed Windows
programs, include symbolic processing using Maple or Mathematica.

The remainder of this manual describes how to install and run GAUSSX. If you are a new user,
you should read Chapter 2 – installation, and Chapter 3 – running GAUSSX. Then, after GAUSSX

is installed, you should get a feel for the program by going through the command files provided
- these are on the gauss\prg folder. The first is tutor.prg, which explains how a typical GAUSSX

command file is written, and how to use the context sensitive help. Have a look at this file by using
the EDIT command. Then try executing it using the RUN command, and then review the output using
the VIEW command. There are a number of other command files available (test01.prg - test57.prg);
these files will give you an idea as to how the GAUSSX command files are written, and can act as
templates for your own work. Details for each command are given in the reference chapter. Finally,
to get an idea of what is new, look at the file readme2.txt, on the \gauss\gsx\doc folder.

1-3

Installation and Configuration 2
2.1 Installing GAUSSX

The installation routines decompress and copy files and libraries from the compressed file to your
GAUSS folder, and then compiles the GAUSSX routines. Before starting however, read this chapter.

As for all software, please observe the normal rules for copyright material.

It is assumed that you have GAUSS already installed in a directory \gauss, and that it is working
properly. In addition, you should have set the defaults for your machine for GAUSS in gauss.cfg,

GAUSSX runs under GAUSS, and consequentially will run in any environment that supports GAUSS.
The appropriate version of GAUSSX corresponds to the version of GAUSS that you have installed.

2.1.1 GAUSSX for Windows

GAUSSX for Windows runs as a 32 bit Windows application when run under a 32 bit version of
GAUSS , and as a 64 bit version when run under a 64 bit version of GAUSS . GAUSS for Windows

2-1

6.0 and higher is required. Windows 2000, XP, Vistaand Windows 7 are supported. Automatic
differentiation requires Maple 9 or higher.

1. GAUSSX for Windows is distributed as a zip file, typically gaussx vsn.zip. Unzip the file
in a temporary folder, and then execute the file setup.exe. This will do the necessary in-
stallation, extraction, and create a program group. You will be prompted for the directory
in which GAUSS is installed, and for your GAUSSX license ID which was provided when
you purchased GAUSSX. The GAUSSX license ID for the student version is 0. The GAUSSX

program files are compiled by GAUSS during the installation process.

2. From Windows, either run GAUSSX from the GAUSSX program group, or execute GAUSS in
the normal way, and at the GAUSS prompt type:

run gaussx �

3. If you have problems installing GAUSSX for Windows, check the Appendix: Trouble Shoot-
ing.

2.1.2 GAUSSX for UNIX and MAC

GAUSSX for UNIX is written entirely in GAUSS, and thus is machine independent. It can run either
in terminal or X-window mode. GAUSS for UNIX 6.0 or higher is required.

1. Insert the GAUSSX CD, and at the UNIX prompt type:

cd gauss directory name
tar –xpvf cd device name
tgauss –b gsx/gaussx.cpl

gauss directory name is the system name of the GAUSS directory, and cd device name is
the system name for the cd drive. The files will then be extracted and copied to the GAUSS

directory, and then compiled under GAUSS.

2. Execute GAUSS in the normal way, and at the GAUSS prompt type:

run gaussx �

2-2

Installation and Configuration

3. The first time you run GAUSSX, it searches for the configuration file gaussx.cfg on the
/gauss/gsx path; if it does not find it, it creates it. This is a text file that you can edit with a
text editor. See the sections on Network Support and Configuration below.

4. If you have problems installing GAUSSX for UNIX, check the Appendix: Trouble Shooting.

2.1.3 Installing GAUSSX manually

Users with non-standard configurations may undertake parts of the installation process manually. In
particular, if the folder \gauss\cp is empty, then compilation did not occur during the installation
process.

To compile the GAUSSX files, enter GAUSS, and at the GAUSS prompt type:

run gsx\gaussx.cpl �

This will read the GAUSSX source programs, compile them, and save them on \gauss\cp. It will
also create the GAUSSX compiled file, gaussxcp.gcg.

2.2 Configuring GAUSSX for Windows

2.2.1 GAUSSX mode

GAUSSX can be used to run both GAUSS and GAUSSX command files; the default is GAUSSX .
The mode is shown in the Project Options screen under File Type - it displays either GAUSS or
GAUSSX. The state can be toggled using the Option\Parse menu item.

2.2.2 Precision

GAUSSX operates under a default of double precision - all data are written using an 8 character byte.
This allows for 15-16 digit precision. If you need only single precision, you can use the statement:

2-3

option single;

within the GAUSSX command file to allow for a 4 character byte, permitting 6-7 digit precision.
The cost of double precision is a doubling in file length for the scratch files. If you use ATOG

under GAUSSX, it will operate at the same precision as currently specified. Stand alone ATOG has a
default of single precision.

2.2.3 Projects

You can import an existing project using the File / Import Project File menu item from the
GAUSSX Project Options screen.

2.2.4 Configuration File

The GAUSSX configuration file is gaussx.cfg on the gauss\gsx subdirectory. Windows settings
are specified under the [Windows Configuration] section.

• gaussx option determines whether the Project Options menu is displayed at start up. De-
fault is on.

• Excel process determines whether spreadsheet files are read and written using Excel (which
must be installed), or using data exchange. For importing Excel 97 and higher, Excel process
is always utilized. Default is on.

• graphic support determines whether Publication Quality Graphics (PQG) or GAUSSPlot
(GPLOT) is used for rendering graphs. Default is PQG.

2.2.5 Performance

• Set cache size in the GAUSS configuration file (gauss.cfg) to the correct value.

• From the GAUSS menu item Configure\Editor, set the font to Fixedsys. The other fonts
result in considerably slower screen display.

2-4

Installation and Configuration

2.2.6 Network support

Each user maintains a project file windesk.prj which resides on gauss\gsx. Normally, the files in
this subdirectory reside on the system disk. GAUSSX will look for an environment variable called
GAUSSXPATH. If this is not found, GAUSSX assumes that the configuration files can be read and
written to \gauss\gsx. If the environment variable is found, GAUSSX will read and write these
files on the path specified by the environment variable.

Configuration information for the Project Options Screen and for GAUSS are stored for each user
(hkey_current_user) in the Windows registry. Registration information for GAUSSX is stored in
(hkey_local_machine) in the Windows registry; this registry item (software\econotron\Gaussx)
may need to be exported to the client, depending on the operating system.

2.2.7 Student version

The student version of GAUSSX will only run under GAUSS-Light, which is the student version of
GAUSS. All limitations that relate to GAUSS-Light obviously thus carry over the student version of
GAUSSX. Installation for the student version of GAUSSX is identical to the procedures described
above. Please note that technical support is available through your professor, and that no direct
technical support for the student version is provided.

2.3 Configuring GAUSSX for UNIX

2.3.1 UNIX configuration file

The GAUSSX for UNIX system configuration file is gaussx.cfg on the /gauss/gsx subdirectory. It
will be copied to the path specified by the environment variable GAUSS CFG. This should be
edited before first running GAUSSX - make sure that all the path names are valid – UNIX is case
sensitive. The configuration options are:

2-5

gaussx editor [pico] The editor used by GAUSSX

gaussx viewer [pico] The viewer used by GAUSSX

display mode [default]/term/X-window Terminal type
screen clear [fast]/slow Terminal mode screen clear
printdos enable/[disable] GAUSS printdos command
graphic support gplot/[pqg] Graphic package

2.3.2 Network support

Each user maintains a configuration file gaussx.cfg which resides on /gauss/gsx. GAUSSX will
look for an environment variable called GAUSS CFG, typically specified in the user’s PROFILE. If
this is not found, GAUSSX assumes that the configuration files can be read and written to /gauss/gsx.
If the environment variable is found, GAUSSX will read and write this file on the path specified by
the environment variable. This file should be edited to ensure that the path names are valid.

2.3.3 Porting PC files

Each line of a PC text file finishes with a LF/CR, while in UNIX each line finishes with LF. Thus
GAUSSX (and GAUSS) programs written for the PC need to be converted. In addition, GAUSSX

and GAUSS data files (dat) created on a PC may not work on a UNIX machine. An easy method of
porting these files is to first archive all the relevant files using pkzip. Then transfer the archive over
the net to the UNIX machine in binary mode. Finally unzip the archive using the –a option. GAUSS

and GAUSSX data files can then be translated to GAUSS’s UNIX format using Aptech Systems’
transdat program.

2-6

Running GAUSSX under

Windows 3

GAUSSX is executed from Windows by clicking the GAUSSX icon on the desktop, or by executing
run gaussx; from the GAUSS prompt.

GAUSSX for Windows runs under GAUSS, using an additional toolbar to provide access to the
GAUSSX controls. Some of these tasks can also be carried out from the Project Options screen,
which, under the default GAUSSX configuration setting, is the first screen that is displayed on
launching GAUSSX for Windows . The Project Options screen can also be displayed by clicking the
Options button in the GAUSSX toolbar.

3.1 Quick Start

The default project has a command file called tutor.prg. Make sure that paths shown are valid.
Click EDIT; the file is displayed in the GsxEdit. Now run this file by clicking the RUN button. You
can view the output file after execution by clicking the VIEW button.

3-1

3.2 Project Options

3.2.1 Overview

GAUSSX provides project management control. If one is involved in a number of different tasks
(or projects), it becomes tedious changing the path and file names each time one changes projects.
GAUSSX for Windows permits up to 100 projects to be maintained. Each project, which has a
name, mode, and description, is linked to the files and paths associated with that project. An
existing project can be opened from the toolbar button, and projects can be created, opened, deleted,
renamed, imported and exported using the menu item.

The Project Options screen displays the files and paths that are associated with the current project.
The project name is shown in the top right panel, and the files and paths are shown in the file display
area. The project mode - whether the command file is written in GAUSS or GAUSSX - is indicated
by the File Type box.

3.2.2 Files

Files and/or paths can be selected by cursor control and ¡enter¿, by clicking with the mouse, or by
typing the highlighted letter.

Command File The COMMAND FILE tells GAUSSX the path and name for the command file; this
is stored in the global variable INFILE; It is often a good idea to keep the command files
and data for a particular project in the same subdirectory. Typically, programs are stored on
the subdirectory \gauss\prg. The command file is where the GAUSSX program is written.
The GAUSSX command language is particularly simple - (it is based on TSP) - and full
documentation is provided in this manual. The test programs test01.prg - test57.prg provide
some examples of GAUSSX command files. Context sensitive help for GAUSSX syntax is
available while editing the command file. See the program tutor.prg for a tutorial.

Output File The OUTPUT FILE path tells GAUSSX the path and name for the output file; this is
stored in the global variable OUTFILE. GAUSS writes the results of the statistical analysis
being undertaken to this file. It is an 80 column ASCII file, and can be imported as text
into any word processor. Generally, it is a good idea to name the output from the first run
output1.doc, from the second output2.doc, etc.

3-2

Running GAUSSX under Windows

Data Path The DATA path sets the global variable PATHD. It tells GAUSSX the path for ASCII,
GAUSS, or GAUSSX data that is to be read prior to a GAUSSX analysis. Files saved under
GAUSSX will also use this path.

Work Path The WORK path sets the global variable PATHW. The WORK path tells GAUSSX the path
to use for the temporary files that are created when data is loaded or transformed. Thus
typically GENR and LOAD will both use the WORK files. These files contain the entire sample
as specified in the CREATE statement. The parsed input file - gxfile.prg - is also written on
this path. In the default, this path is defined by the TMP environment variable.

Sample Path The SAMPLE path sets the global variable PATHS. It is used by GAUSSX as the path
for the temporary file that is used by all commands that require iteration - such as FIML and
NLS. As its name suggests, only the data pertaining to the current sample is maintained on
this file. In the default, this path is defined by the TMP environment variable.

3.2.3 Options

The Optionsmenu permits a number of GAUSSX options to be set from the Project Options screen.
Each option is either ON or OFF; the ON status is shown by a check-mark. An option can be toggled
by highlighting the option using either the up/down cursor keys and typing ¡enter¿, or alternatively
by typing the respective hot-key shown in the pop-up menu.

Lines If LINES is set to ON, the command #LINESON is placed at the beginning of the parsed
command file. Should an error occur, GAUSS will report the line at which the error occurred.
LINES ON is the default. If LINES is set to OFF, the command #LINESOFF is placed at the
beginning of the parsed command file. This makes for slightly faster execution.

Screen If SCREEN is set to ON, all output is sent to the screen as well as to the output file — this is
the default. Setting SCREEN to OFF will speed things up if there is a lot of output — make
sure that you do not use a ”wait;” command in such a situation. This option can be changed
dynamically within the command file.

Print If PRINT is set to ON, all output is sent to device LPT1, and the output file is not written. The
default for PRINT is OFF. This option can be changed dynamically within the command file.

Parse Each project has an associated mode, which defines whether the command file is written
in GAUSS or GAUSSX . This mode is indicated by the icon on the top RHS of the screen.

3-3

A GAUSSX command file is first parsed before being executed by GAUSS, while a GAUSS

command file needs no parsing. The mode can be changed by using the PARSE option. A file
which includes the statement library gaussx will always be taken as a GAUSS command
file

Compressed The default output width of GAUSS output is 80 columns. By setting COMPRESSED to
ON, 132 column output can be generated. If you plan to send this output to the printer, then
a line print mode (16.6 cpi) will work well. You must set the escape codes manually, or set
the printer into line mode from the control panel.

3.2.4 Commands

The commands are shown on the toolbar - they are also available from the menu bar.

3.2.5 Configuration

This menu item permits the user to specify external applications used by GAUSSX.

Editor The default editor is GsxEdit, and this editor provides context sensitive help on any
GAUSSX reserved word on typing ”F1” when the caret is placed on the word. GAUSSX

can use any user specified editor, including GAUSS.

Viewer The default viewer is Notepad – any external program capable of viewing files, including
GAUSS, can be specified.

Maple This configures GAUSSX for the command line version of Maple.

Mathematica This configures GAUSSX for the command line version of Mathematica.

3-4

Running GAUSSX under Windows

3.2.6 Navigation

To navigate within the file display and execution control areas use the cursor or the ”TAB” and
”Shift-TAB” keys to move to the required entry. The entry can be executed by typing ¡enter¿ when
it is highlighted, or by typing the first letter of the command. Thus to VIEW an output file, type the
letter ”v”.

KEY FUNCTION

Tab/shift Tab Move one field up or down
Highlight letter Execute respective field
Alt-letter Highlight Pull-down menu

3.3 GAUSSX Commands

GAUSSX operates within GAUSS for Windows by adding a toolbar attached to the top right cor-
ner of the screen. When GAUSSX is first run, the GAUSSX Project Options screen is displayed.
Subsequently, the toolbar containing five buttons is displayed when required.

Editing and running GAUSSX command files is identical to editing and running standard GAUSS

files, with the following comments:

• Running a GAUSSX command file requires the File Mode to display GAUSSX in the Project
Options dialog.

• To edit the command file currently specified in the Project Options Screen, click the GAUSSX

Edit button. After you have finished editing the file, save it before running the GAUSSX job.

• To run the current command file, click the GAUSSX Run button. The GAUSSX toolbar will
disappear, since it is not needed. It will reappear at the end of the GAUSSX job.

• To view the output file at the end of a GAUSSX job, click the GAUSSX View button.

• If a GAUSS error occurs during the execution of a GAUSSX command file, enter the command
gaussx; from the GAUSS prompt. This will display the section of the parsed file where the
error occurred.

3-5

• To return to the Project Options screen, click the GAUSSX Option button.

• To return to GAUSS, click the GAUSSX Exit button.

3.4 GAUSSX Tools

These tools are accessed from the GAUSSX Tools menu.

Execute Maple This facility permits the use of symbolic algebra in GAUSS. GAUSS is a numerical
processing language, as opposed to a symbolic language. Thus GAUSS cannot evaluate
indefinite integrals, or analytic gradients. The MAPLE or MATHEMATICA commands permits
symbolic operations to be embedded within a GAUSS or GAUSSX command file. These
operations include symbolic differentiation and integration, exact linear algebra, and the
symbolic solutions to algebraic equations. In addition, a large class of functions that are
available in Maple now become accessible to GAUSS.

In this section, we describe how to evaluate symbolic operations using Maple; the same
operations also apply in using Mathematica.

Select the Tools\Maple menu item from the GAUSSX Project Options screen. In the (top)
input text box, enter the Maple code, and then click the Submit button.

The result is displayed in the output text box, showing both the entire Maple session, as well
as the equivalent code as a set of optimized Fortran expressions. This code has a syntax that
is very close to GAUSS syntax; however some editing is necessary – one needs to convert
the Fortran exponent “**” to GAUSS “’̂’ , and “;” must be added to the end of each line. In
addition, some Fortran functions have different names than their GAUSS equivalent. After
editing, the set of expressions can then be pasted back to the command file. Examples are
given in test23.prg.

The command line version of Maple V, rev 4 or higher must already have been configured
in the Configure\Maple menu item. Maple is available from Maplesoft, Waterloo Maple
Inc., Ontario, Canada.

Execute Mathematica See the discussion above for “Executing Maple”.

The command line version of Mathematica 3 or higher must already have been configured
in the Configure\Mathematica menu item. See test27.prg for examples. Mathematica is
available from Wolfram Research, Champaign, IL, USA.

3-6

Running GAUSSX under Windows

Internet Resources This option provides access to the internet from within GAUSS, and provides
links to econometric data and GAUSS code. The source file is econolink.htm, which is
located on the gauss\gsx folder.

3.5 Batch mode

Batch mode Windows processing can be initiated from the command line using the command:

tgauss -b gaussxb �

In batch mode, the Project Options menu is not displayed. Rather, the files and path are read from
the [Project] section of the GAUSSX configuration file. The system exits at the end of the run.

In this mode, all requests for keystrokes are disabled, and no output is displayed. However the
output will still be written to the specified output file.

3-7

Running GAUSSX under UNIX 4
GAUSSX is executed under UNIX by the command

tgauss gaussx �

or from GAUSS for UNIX by typing at the GAUSS prompt:

run gaussx �

If there is a GAUSS error, control is returned to GAUSSX by typing:

gaussx �

or
run gaussx �

4.1 UNIX menu

The UNIX version of GAUSSX was designed to run in terminal mode; consequently, control occurs
through a GAUSS menu. As in the Windows version, the command files and data paths must be

4-1

specified - see section 3.2.2. The menu supports the commands EDIT, RUN, VIEW, QUIT and
EXIT. Menu choices are made by typing the first letter of the respective command. The default
editor and viewer is vi. Typing ”h” provides a description for each menu option.

4.2 Quick Start

The default configuration file is displayed on running GAUSSX. Make sure that paths shown are
valid. First view the default command file (tutor.prg) using the edit facility by entering:

E �

The file is displayed in the default editor. On exit from the editor, the configuration file is redis-

played. Now run this file by entering:

R �

and then view the output file by entering:

E �

4.3 Batch mode

Batch mode UNIX processing can be initiated from the command line using the command:

tgauss -b gaussxb �

This will run the current GAUSSX configuration file, and then exit. In this mode, all requests for

keystrokes are disabled, and no output is displayed. However the output will still be written to

the specified output file.

4-2

GAUSSX Commands - Syntax

and Summary 5

5.1 Syntax

Each GAUSSX command has a standard syntax, as follows:

COMMAND (dopt) vlist ;

OPTION = opt1;

OPTION = opt2;

where:

COMMAND is a GAUSSX command

dopt is an optional set of display options

vlist is a list of vectors

OPTION is a GAUSSX subcommand

opt’s are GAUSSX options.

5-1

5.2 Variable names

Variable names must be alpha-numeric, and not more than 8 characters in length. However,

when using lags, the entire string (eg GNP(-1)) must be less than 8 characters. The first

character must be ” ” or alpha. GAUSSX is not case sensitive.

Reserved variable names are:

C — A vector of unity.

_ID — A sequential vector, depending on the frequency.

_SAMPLE — A vector of unity if observation is in current sample,

else zero.

NOBS — The number of observations in the current sample.

N — The number of observations in the current dataloop.

Other reserved variable names are described under the heading “Outputs” for each GAUSSX

command in the reference section.

5.3 Summary

The commands are arranged alphabetically. For easy reference, a summary of commands

arranged by type is given below. Note that GAUSSX will operate much more efficiently if com-

mands of similar type are grouped together—for example, all the data declaration files are

grouped, followed by a group of estimation commands. This reduces the number of times the

GAUSSX sample file needs to be created, and also reduces the amount of code swapping.

5-2

GAUSSX Commands - Syntax and Summary

5.3.1 Data creation and handling

CREATE — Creates a new workfile

DENOISE — Noise filter using wavelets

DGP — Data generation process

DIVISIA — Create chained price index

DROP — Removes variables from workfile

DUMMY — Create dummy variables

EXPAND — Expands a matrix in quad and cross terms

FETCH — Fetch data for global operations

DURATION — Duration model measures

FEVAL — FRML evaluation

FILTER — Data filter

FORCST — Forecast or create variables

GENR — Generates a new series from a formula

GETF — Loads a matrix from disk

KEEP — Retains variables in workfile

LOAD — Loads data into GAUSSX

NORMAL — Transforms vector to a normal variate

OPEN — Reads a data file into GAUSSX

PDL — Defines PDL variables

PRIN — Principal components

PUTF — Saves a matrix to disk

RENAME — Renames a variable in a workfile

SAMA — Seasonal adjustment

SAVE — Saves the current work file onto disk

SOLVE — Solve a system of equations

STORE — Store global data in GAUSSX workspace

SURVIVAL — Survival model measures

5-3

5.3.2 Descriptive

ANOVA — Analysis of variance

CATALOG — Descriptive comments

CLUSTER — Cluster groups and dendrogram

CORDIM — Correlation dimension

CORR — Correlation measures

COVA — Correlation matrix & descriptive statistics

CROSSTAB — Cross-tabulation of data

FREQ — Frequency distributions

GRAPH — Graph one variable against another

LYAPUNOV — Lyapunov exponent

PLOT — Plot series against time

PRINT — Print vectors

SVD — Singular value decomposition

TABULATE — Descriptive statistics in a hierarchical table

TEST — Parametric and non-parametric test statistics

5.3.3 Formula definition

ANALYZ — Parameter generation

CONST — Constant definition

FRML — Formula & macro definition

PARAM — Parameter definition

5-4

GAUSSX Commands - Syntax and Summary

5.3.4 Estimation methods

AR — Autoregressive errors

ARCH — Autoregressive conditional heteroscedastic errors

ARIMA — Autoregressive integrated moving average

EXSMOOTH — Exponential smoothing

FIML — Full information maximum likelihood

GMM — General method of moments

HECKIT — Heckman sample selection model

KALMAN — Kalman filter

LP — Linear programming

MCMC — Markov chain Monte Carlo

MCS — Monte Carlo simulation

ML — Maximum likelihood

NLS — Nonlinear least squares

NPR — Nonparametric regression

OLS — Ordinary least squares

PANEL — Panel data regression

PLS — Partial least squares

POISSON — Poisson regression

QR — Quantal response (logit, probit, ordered)

ROBUST — Robust estimation

RSM — Response surface methodology

STEPWISE — Stepwise regression

SURE — Seemingly unrelated regression estimation

VAR — Vector autoregressive

2SLS — Two stage least squares

3SLS — Three stage least squares

5-5

5.3.5 Processes

AGARCH — Asymmetric GARCH process

ANN — Artificial neural network

ARCH — ARCH process

ARFIMA — ARFIMA process

ARIMA — ARIMA process

ARMA — ARMA process

BETA D — Beta (distribution) process

COX — Cox proportional hazards model

DBDC — Double-bounded dichotomous choice process

EGARCH — Exponential GARCH process

EXPON — Exponential process

FIGARCH — Fractionally integrated GARCH process

FMNP — Feasible multinomial probit

FPF — Frontier production function

GAMMA D — Gamma (distribution) process

GARCH — GARCH process

GOMPERTZ — Gompertz process

GUMBEL — Gumbel (largest extreme value) process

IGARCH — Integrated GARCH process

INVGAUSS — Inverse Gaussian process

KALMAN — Kalman filter

LOGISTIC — Logistic process

LOGLOG — Loglogistic process

LOGIT — Binomial logit process

LOGNORM — Lognormal process

MGARCH — Multivariate GARCH process

MNL — Multinomial logit

MNP — Multinomial probit

MSM — Markov switching models

MVN — Multivariate normal process

NEGBIN — Negative binomial process

NORMAL — Normal process

NPE — Non parametric estimate

ORDLGT — Ordered logit process

ORDPRBT — Ordered probit process

5-6

GAUSSX Commands - Syntax and Summary

PARETO — Pareto process

PEARSON — Pearson process

PGARCH — Power GARCH process

POISSON — Poisson process

PROBIT — Binomial multivariate probit process

SEV — Smallest extreme value process

SV — Stochastic volatility process

TGARCH — Truncated GARCH process

TOBIT — Tobit process

VARMA — Vector autoregressive moving average process

WEIBULL — Weibull process

WHITTLE — Local Whittle process

5.3.6 Bitwise Commands

IAND — Bitwise and

IEQV — Bitwise eqv

IOR — Bitwise or

INOT — Bitwise complement

ISHFT — Bitwise shift

IXOR — Bitwise xor

RADIX — Convert decimal to base

RADIXI — Convert base to decimal

5-7

5.3.7 Statistical Commands

CDF — Cumulative density function

CDFI — Inverse cumulative density function

CDFMVN — Cumulative density multivariate normal

COPULA — Copula

INVERT — Inverts a function

LHS — Latin hypercube sampling

MROOT — Largest root

MVRND — Multivariate random sampling

PDF — Probability density function

PDROOT — PD Test for smallest root

QDFN — Multivariate normal rectangular probabilities

RND — Random sampling from density function

RNDGEN — Random sampling from any distribution

RNDQRS — Quasi random number sequences

RNDSMPL — Random sampling with or without replacement

RNDTN — Truncated multivariate normal random numbers

STATLIB — Library of statistical distributions

5.3.8 Finance/Economics Commands

AMORT — Amortization schedule

FRONTIER — Efficient frontier

FV — Future value

GINI — Gini coefficients

MCALC — Mortgage calculation

ME — Maximum Entropy

PV — Present Value

SPECTRAL — Power spectrum estimation

WELFARE — Consumer surplus and deadweight loss

5-8

GAUSSX Commands - Syntax and Summary

5.3.9 In-Line commands

LAG — Lag

NMV — Not missing value

NUMDATE — Observation number

5-9

5.3.10 Support Functions

ACF — Autocorrelation function

ACV — Autocovariance function

ARCCOSH — Inverse cosh function

ARCSINH — Inverse sinh function

ARCTANH — Inverse tanh function

CENMEANC — Censored mean

CENSTDC — Censored standard deviation

COMBS — All combinations

DECONV — Vector deconvolution

INTERP — Vector interpolation

INTERP2 — Matrix interpolation

ISCHAR — Test for character vector

ISEMPTY — Test empty string

LNGAMMA — Natural log of the gamma function

MPRINT — Print formatted matrix

PERMS — All permutations

POLYDIV — Polynomial division

POLYINV — Polynomial inverse

SCALZERO — Test scalar zero

WAITKEY — Prompt for key input

XGAMMA — Gamma function

XPAND — Expand matrix in own and cross powers

5-10

GAUSSX Commands - Syntax and Summary

5.3.11 Miscellaneous

#LIST — Enable command file listing

#NOLIST — Disable command file listing

END — End of command file

EVAL — Evaluate string

FMTLIST — Formats output

GROUP — Specifies conditional variables

LIST — Replace variable list

LOADPROC — Load a previously stored procedure

LOOP — Loop over block of code for multisector data

NFACTOR — Memory management

OPTION — Set GAUSSX options

PAGE — Page break

SAVEPROC — Save a symbolic procedure

SMPL — Specifies the sample

TIMER — Timer control

TITLE — Sets a title

? — Command file comments

@@ — GAUSS commands

5-11

5.4 Display Options

The display options specified in ¡dopt¿ consist of the following. Note that each command uses

only a subset of these options.

” b” — print brief output

” c” — print correlation matrix

” d” — print descriptive statistics

” e” — print elasticities

” h” — hardcopy option for plots

” i” — print parameters at each iteration

” m” — print marginal effects

” p” — pause after each screen display

” q” — quiet – turn off screen and printed output

” r” — rotate axis

” s” — print diagnostic statistics

” v” — print covariance matrix

5.5 Reference Syntax

The following syntax is used throughout the reference section:

run gaussx; Command lines.

ARIMA GAUSSX commands and options.

winsize Placeholder for user input.

DIRECT Option values.

test01.prg File names.

TMP Other variables.

5-12

GAUSSX Reference 6

6-1

AGARCH Process

Purpose Creates a vector of log likelihoods for an asymmetric GARCH process.

Format z = AGARCH (resid, avec, bvec, gvec);

z = AGARCH T (resid, avec, bvec, gvec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for the ARCH process.

bvec literal, vector of parameters for the GARCH process.

gvec literal, vector of γ parameters.

dvec literal, distributional parameter (ν).

Output z vector of log likelihoods.

ht vector of conditional variance.

Remarks The structural coefficients and the coefficients of the AGARCH process are

estimated using maximum likelihood. The AGARCH model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 +
∑
i=1

αi(|εt−i| − γiεt−i)2 +
∑
j=1

β jht− j

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged asymmetric ε2 terms; this is the ARCH process. The β are the

weights for the lagged h terms; this is the GARCH process.

avec is a vector of parameters giving the weights for the lagged asymmetric

squared residuals. The first element, which is required, gives the constant.

gvec is a vector of parameters for the asymmetric process - the order of gvec

should be one less than the order of avec. bvec is the vector of parame-

ters for the GARCH process. Note the stationarity conditions described under

GARCH.

6-2

AGARCH Process

See the “General Notes for GARCH” under GARCH, and the “General Notes

for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM c0 c1 c2;

VALUE = coeff;

PARAM a0 a1 a2 b1 g1;

VALUE = sigsq .1 .1 0 0;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 a1+a2+b1 <= .999999;

FRML eq1 resid = y - (c0 + c1*x1 + c2*x2);

FRML eq2 lf = agarch(resid,a0|a1|a2,b1,g1|g1);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5;

In this example, a linear AGARCH model is estimated using constrained max-

imum likelihood, with OLS starting values. The residuals are specified in eq1,

and the log likelihood is returned from eq2. Note the parameter restrictions

to ensure that the variance remains positive. This is a simplified model, in

that only one γ parameter is specified – an alternative would be to have a

separate γ for each lag.

Source GARCHX.SRC

See Also GARCH, EQCON, FRML, ML, NLS

References Ding, Z., R.F. Engle, and C.W.J. Granger. (1993), “A Long Memory Property

of Stock Market Returns and a New Model”, Journal of Empirical Finance,

Vol 1 (1), pp 83-106.

6-3

AMORT

Purpose Calculate the amortization schedule over the life of a loan.

Format {prin, intrst, balnce } = AMORT (p, r, n);

Input p scalar, loan amount.

r scalar, interest rate per period.

n scalar, number of periods.

Output prin nx1 vector of principal payments at each period.

intrst nx1 vector of interest payments at each period.

balnce nx1 vector of remaining balance at each period.

Remarks The AMORT statement returns three vectors, each of length n showing the

payment of principal and interest for each period of the loan, and the balance

outstanding. The interest rate is per period; thus an annual rate of 9% paid

monthly for 20 years would have r = .09/12 = 0.0075, and n = 12 ∗ 20 = 240.

AMORT is pure GAUSS code, and is used independently of GAUSSX.

Example library gaussx ;

p = 1000;

r = .1/12;

n = 12;

{prin,intrst,balnc} = amort(p,r,n);

prin’=

79.582554 80.245742 80.914456 81.588743

82.268650 82.954222 83.645507 84.342553

85.045407 85.754119 86.468737 87.189310

intrst’=

8.3333333 7.6701454 7.0014309 6.3271437

5.6472375 4.9616655 4.2703803 3.5733344

2.8704798 2.1617680 1.4471504 0.72657758

balnc’=

920.41745 840.17170 759.25725 677.66850

6-4

AMORT

595.39985 512.44563 428.80013 344.45757

259.41217 173.65805 87.189310 0.0000

This example calculates the interest payment, principal payment and remain-

ing balance for a $1000 loan paid at 10% paid off over one year. If the sample

size is set to n, the vectors prin, intrst and balnc can be saved in the

GAUSSX workspace using the STORE command.

Source FINANCE.SRC

See Also FV, MCALC, PV

6-5

ANALYZ

Purpose Estimates the values and covariance matrix for a set of non-linear functions

of parameters estimated from the most recent estimation.

Format ANALYZ (options) elist ;

METHOD = method ;

REPLIC = nrep ;

TITLE = title ;

VLIST = vlist ;

Input options optional, print options.

elist literal, required, equation list.

method literal, optional, standard error mode. [Delta]

nrep literal, optional, number of replications. [5000]

title string, optional, title.

vlist literal, optional, parameter list.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t–statistics.

VCOV A Parameter covariance matrix.

Remarks The ANALYZ command estimates the parameters on the LHS of each equa-

tion specified, as well as the parameter covariance matrix, based on the es-

timated covariance matrix of the most recent estimation. The coefficient vec-

tor from the previous Type I regression must be assigned to parameters in a

VLIST statement. The new parameters are then available for use as if they

had been created in a PARAM statement.

Two methods are available for estimating the standard error of the estimated

parameters:

DELTA This is the standard method for calculating the standard errors,

and is the default.

KR The Krinsky-Robb methodology estimates the standard errors us-

ing nrep simulations of the original parameters, drawn from a mul-

tivariate normal distribution with the estimated covariance matrix.

6-6

ANALYZ

Print options include d – print descriptive statistics, p – pause after each

screen display, v – print parameter covariance matrix, and s – compute the

Wald statistic for the hypothesis that the set of functions is jointly zero.

Example FRML eq1 y1 = a0 + a1*x + a2*z;

FRML eq2 y2 = b1 + ln(b2*x + a2*w);

FRML eq3 c1 = (b1 + b2 + b3)/sigma;

FRML eq4 c2 = (b1/a1);

FRML eq5 elas = a1*meanc(y)/meanc(x);

NLS eq1 eq2;

1. ANALYZ (p,d,v,w) eq3 eq4;

2. ANALYZ (p,s) eq5;

3. OLS y c x1 x2;

FRML eqa1 bb1 = b1/b2;

ANALYZ (p) eqa1;

METHOD = KR;

VLIST = b0 b1 b2 ;

These examples show typically how ANALYZ is utilized. Two Type II equa-

tions are jointly estimated using NLS – in fact this is a non-linear constrained

estimation, since the coefficient on w is constrained to be the same as the co-

efficient on z. Parameters c1 and c2 are created - their values and standard

errors are displayed (d), as is their variance-covariance matrix (v), and the

Wald statistic (s) is computed.

The second ANALYZ statement shows how an elasticity at the mean could be

evaluated, along with its variance. Note that the function must return a scalar

- GAUSSX looks after fetching the data.

The third example shows how ANALYZ is used after a Type I estimation, using

the Krinsky-Robb methodology. The number and position of parameters in

vlist relate directly to the coefficient vector of the previous estimation.

6-7

ANALYZ

See Also CONST , FRML , NLS , PARAM

References Rao C.R. (1973), Linear Statistical Inference and its Applications, Wiley, New

York.

Krinsky, I., and A. L. Robb. (1986), “On Approximating the Statistical Proper-

ties of Elasticities.” Review of Economics and Statistics, Vol 68, pp. 715-719.

6-8

ANN Process

Purpose Returns the fitted values of an Artificial Neural Networks process.

Format z = ANN (x, amat, bmat);

z = ANN (y∼x, amat, ny);

Input x literal, required, matrix of inputs.

amat literal, required, matrix of parameters for hidden layer.

bmat literal, required, matrix of parameters for output layer.

y literal, required, matrix of outputs.

ny literal, required, number of outputs.

Output z Matrix of predicted values or probabilities.

Remarks ANN is used as part of a FRML statement to estimate the hidden and output

weights of a neural networks process. This is achieved using either least

squares in a regression context, or maximum likelihood in a probability con-

text. An econometric formulation of a feed forward (ie. non-recursive) single

hidden layer ANN is:

yh = F

βh0 +

q∑
j=1

G(x̃′γ j)βh j

 h = 1, . . . , g

where yh is a gx1 vector of endogenous variables, x̃ = (1, x1, . . . , xk)′ is a

kx1 vector of explanatory variables, γ j = (γ j0, γ j1, . . . , γ jk)′ is a k + 1x1 vector

of hidden weights, q is the number of hidden units, G is the transformation

applied in the hidden layer, βh = (βh0, βh1, . . . , βhq)′ is a q+1x1 vector of output

weights, and F is the transformation applied in the output layer. (Observation

subscripts are excluded for clarity). Commonly, G(.) is sigmoid:

G(x̃′γ) = 1/(1 + e−x̃′γ)

though any mapping on the {0, 1} space will do. If y is continuous, F(.) should

be linear, ie. F(z) = z, while if y is a limited dependent variable, F(.) should

also map to the {0, 1} space. In econometric terms, this is a system of g
non-linear equations, with some common coefficients (γ) across equations.

The program control options for both ML and for NLS are described in the

“General Notes for Non-Linear Models” under NLS. In addition, there are

some specific options available under the OPLIST option:

6-9

ANN Process

OPLIST = progopts ;

where:

progopts literal, optional, options for ANN control.

The program control options are specified in progopts. The options available

are:

HIDDEN = function Specifies the transfer function carried out in the hid-

den layer. function can be chosen from the following: ARCTAN,

CDFN, GAUSSIAN, HALFSINE, LINEAR, SIGMOID, STEPFN, and

TANH. The default is SIGMOID.

OUTPUT = function Specifies the transfer function carried out in the output

layer. function is defined above, but also includes OLS. The default

is SIGMOID under ML, and LINEAR under NLS.

NONE/DENSITY/MAXIMUM Specifies the type of output scaling that is car-

ried out. NONE invokes no scaling - this is the default under NLS.

DENSITY scales the output such that the sum for each observa-

tion is unity; this is the default under ML. MAXIMUM does not return

a matrix, but instead returns a vector containing the index of the

category with the maximum value.

AUGMENT/[TRANSFER] Specifies the type of model estimated. The de-

fault is the feedforward model consisting of a single hidden and

a single output layer, with a transfer function for each. Under the

AUGMENT option, the hidden layer consists of the sum of the hidden

transfer function and a linear function of the inputs - consequently

β will have k extra elements.

PRINT/[NOPRINT] Specifies whether a description of the ANN options

actually used should be printed out. This is useful for debugging.

When the output transfer function is linear and the optimization is undertaken

using NLS, it is possible to express the output weights (β) in a closed form.

This results in a significant reduction in the number of parameters that need

to be estimated. The second form of the ANN command is used, and the

output transfer function is specified as OLS; the output weights are available

as a global called _nnbeta.

6-10

ANN Process

Since ANN returns a matrix if there is more than one output unit, the command

should normally be placed in a macro definition that will be referenced in an

EQSUB – see the example below.

Artificial neural networks may often have difficulty converging. In addition,

initial values are important, and must be chosen in the context of the selected

transfer functions. Start off with a small number of hidden units, and work

up. Note that it is often possible to use random hidden weights, and to let the

output weights do most of the work. An example of ANN estimation is given

in test20.prg.

Example 1. PARAM amat;

SYMBOL = a;

ORDER = 4 2;

PARAM bmat;

SYMBOL = b;

ORDER = 3 2;

FRML eqw w := ann(x1˜x2˜x3,amat,bmat);

FRML eq1 y1 = submat(w,0,1);

FRML eq2 y2 = submat(w,0,2);

NLS (p,i) eq1 eq2 ;

EQSUB = eqw;

OPLIST = print;

FORCST y1hat y2hat;

2. PARAM amat;

SYMBOL = a;

ORDER = 3 4;

FRML eq1 y = ann(y˜x1˜x2,amat,1);

NLS (p,i) eq1;

OPLIST = output = ols print;

3. PARAM amat;

SYMBOL = a;

ORDER = 3 1;

PARAM bmat;

SYMBOL = b;

6-11

ANN Process

ORDER = 2 4;

FRML eqp p := ann(x1˜x2,amat,bmat);

FRML eq0 llf = ln(p[.,1].*y1 + p[.,2].*y2

+ p[.,3].*y3 + p[.,4].*y4);

ML (p,i) eq0 ;

EQSUB = eqp;

FETCH x1 x2;

prob = ann(x1˜x2,amat,bmat);

STORE p1hat p2hat p3hat p4hat;

VLIST = prob;

The first example shows an ANN estimation of a continuous variable, three

(k) input, two (g) output model, with 2 (q) units in the hidden layer. amat

is a 4x2 ((k+1)xq) matrix of hidden weights, and bmat is a 3x2 ((q+1)xg)

matrix of output weights. These weights (parameters) are estimated in the

NLS command – the macro eqw is evaluated before every call to eq1 and

eq2. The default for NLS generates a sigmoid transformation at the hidden

level, and no transformation nor scaling at the output level. A print option is

specified in oplist. The fitted values are created in the subsequent FORCST.

The second example shows the ANN estimation of a continuous variable, two

(k) input, one (g) output model, with 4 (q) units in the hidden layer. amat is a

3x4 ((k+1)xq) matrix of hidden weights. The output weights are not specified

since the option output = ols is specified.

The third example shows an ANN estimation for the categorical variable case.

There are two (k) inputs, one (q) units in the hidden layer, and four (g) out-

puts. y1, ..., y4 take the value unity if the respective category is selected,

else zero. amat is a 3x1 ((k+1)xq) matrix of hidden weights, and bmat is a

2x4 ((q+1)xg) matrix of output weights. These weights (parameters) are esti-

mated in the ML command. The default for ML generates a sigmoid transfor-

mation at the hidden and output level, and a scaling such that the sum of the

outputs equals unity - thus p is a matrix of probabilities. The fitted values are

created as shown.

Source NEURALX.SRC

6-12

ANN Process

See Also EQSUB , FRML , ML , NLS , NPE

References Kuan, C.M., and H. White (1994), “Artificial Neural Networks: An Econometric

Perspective”, Econometric Reviews, Vol. 13 (1), pp. 1-91.

Webb, A.R., and D. Lowe (1988), “A hybrid optimisation strategy for adaptive

feed-forward layer networks”, RSRE Memorandum 4193, Royal Signals and

Radar Establishment, Malvern, UK.

6-13

ANOVA

Purpose Undertakes an analysis of variance for a single variable.

Format ANOVA (options) elist ;

MODEL = model ;

TITLE = title ;

VALUE = random ;

VLIST = covlist ;

Input options optional, print options.

elist literal, required, variable list or equation name.

covlist literal, optional, covariate list.

model literal, optional model matrix. [1]

random literal, optional, random vector.

title string, optional, title.

Output STATS Tabular output.

Remarks ANOVA implements an N-way analysis of variance providing an adjusted (Type

III) sum of squares for fixed, random or mixed models, which can be balanced

or unbalanced. Covariates are permitted, and for random or mixed models,

variance components are reported. The model is specified in terms of nested

effects and interaction effects.

The variables are entered in elist with the dependent variable first, followed

by a list of categorical variables. Alternatively, elist can consist of an equa-

tion name which has been previously specified in a Type I FRML command.

Each categorical variable, which consists of consecutive integer values, will

be transformed to dummy variables by ANOVA. Covariates can be entered as

a list in covlist.

A model is specified in terms of the K categorical variables and the groups

that are formed from these categorical variables. All models consist of the

level 1 categorical variables. The model, specified in model, consists either

of a scalar specifying the maximum order, or a K column matrix of zeros and

ones, where each row corresponds to a group. Nested components are also

specified in the model field, using the ‘n’ notation to specify which variable is

nested. Nesting occurs before interaction.

6-14

ANOVA

Consider the following analysis of variance:

ANOVA Y A B C;

Y is the variable whose sum of squares is to be assigned on the basis of the

three categorical variables A, B and C. Various models are shown below:

model = 1; Groups: A, B, C

model = 2; Groups: A, B, C, AB, AC, BC

model = 3; Groups: A, B, C, AB, AC, BC, ABC

model = { 1 1 0, Groups: A, B, C, AB, AC, ABC

1 0 1,

1 1 1};

model = { 1 n 0, Groups: A, B(A), C, AC

1 0 1 };

model = { 1 0 1, Groups: A, B(A), C, AC, B(A)C

1 n 0,

0 1 1 };

Similarly, random (and mixed) models are specified in random:

value = { 0 0 0}; A - fixed, B - fixed, C - fixed

value = { 1 0 1}; A - random, B - fixed, C - random

Print options includes d —descriptive statistics, q —quiet - no output, p —

pause after each screen display, and s —diagnostic checking.

The variable specified in “Outputs” is returned as a global variable.

6-15

ANOVA

Example 1. ANOVA (p,d) score noise subject etime;

MODEL = 2;

2. FRML eq1 score noise subject etime;

ANOVA (p) eq1;

VALUE = 1 1 1;

MODEL = { 1 1 0, 0 1 1, 1 1 1 };

3. ANOVA (p) eq1;

VALUE = 0 0 1;

MODEL = { 1 n 0, 1 0 1 };

In example 1, an ANOVA is undertaken on score using noise, subject and

etime as categorical variables. The model includes all terms up to level 2 -

that is, linear terms and two way interaction terms. Descriptive statistics (d)

are displayed.

Example 2 uses the same variables, but this time expressed in a FRML. This

is a random model, since each categorical variable is specified as unity in the

random field. The model consists of the linear terms (always), the two way in-

teractions noise*subject and subject*etime are the three way interaction

noise*subject*etime.

Example 3 is a mixed model - etime is random, while the other categorical

variables are fixed. This is a nested model - subject is nested within noise

- and also includes an interaction term - noise*etime.

References Macnaughton, D.B, Computing numerator sum of squares in unbalanced

analysis of variance, http://www.matstat.com/ss/pr0139.sas

Milliken, G.A.and D.E. Johnson (1984), Analysis of Messy Data, Van Nos-

trand Reinhold Co., New York.

Montgomery, D.C. (1991). Design and Analysis of Experiments, 3rd ed., J.

Wiley and Sons Inc.

Searle, S.R. (1987), Linear Models for Unbalanced Data, Wiley, New York.

6-16

ANOVA

See Also TABULATE

6-17

AR

Purpose Estimates the coefficients of linear models with serially correlated errors.

Format AR (options) vlist ;

MAXIT = maxit ;

METHOD = meth ;

ORDER = lags ;

PDL = pdllist ;

TITLE = title ;

TOL = tolerance ;

VALUE = values ;

WEIGHT = wtname ;

Input options optional, print options.

vlist literal, required, variable list or equation name.

maxit numeric, optional, maximum number of iterations (20).

meth literal, optional, stepsize method (CORC).

lags literal, optional, AR process (1).

pdllist literal, optional, options for PDL.

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

values numeric, optional, starting value of coefficients.

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t–statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

LLF Log likelihood.

RSQ R-squared.

RBARSQ RBAR-squared.

6-18

AR

VCOV Parameter covariance matrix.

Remarks The AR command estimates the parameters of a linear autoregressive model

using an iterative procedure. The equation is specified in the same manner

as in OLS. Since zero restrictions are permitted, the AR process must be fully

specified - see the examples.

Three algorithms are available;

CORC The Cochrane-Orcutt iterative method. Estimates of rho are de-

rived at each iteration, and the rho-transformed variables are then

used for the next iteration. The first observation is dropped.

GN The Gauss-Newton algorithm. This algorithm generally does bet-

ter than CORC when there are lagged dependent variables. The

first observation is dropped.

PW The Prais-Winsten algorithm. This algorithm is the same as CORC,

but the first observation is not dropped. The PW transformation for

the first observation is
√

(1 − ρ2)(y1 − β
′x1).

The AR process requires that the data must be in core, and uses the current

sample, which must be contiguous. GAUSSX automatically drops the first rho

cases to allow for the transformed structure.

The coefficient vector (COEFF) consists of the structural coefficients followed

by the “rhos”. When used in FORCST, only the structural coefficients are used

- thus this is equivalent to an OLS forecast.

The summary statistics are based on the Rho-transformed variables.

See the “General Notes for Linear Models” under OLS, and the example in

test07.prg.

6-19

AR

Example FRML eq1 y c x1 x2;

1. AR (p,d) eq1 ;

2. AR (p,i) y c x1 x1(-1);

METHOD = GN;

ORDER = 1 2;

3. AR (v) eq1;

METHOD = CORC;

ORDER = 1 4;

MAXIT = 40;

Example 1 shows the default situation; an AR1 process is modelled, using

the Cochrane-Orcutt methodology on eq1; the display pauses (p) after each

screen, and descriptive statistics (d) are displayed. In the second example,

the equation is specified within the AR command - y is the dependent variable,

and c, x1, and x1 lagged once are the independent variables. A second

order AR process is modelled - thus there will be two parameters estimated;

these are called RHO1 and RHO2. The method used is the Gauss-Newton

iterative method. Intermediate result after each iteration are displayed under

the (i) option. In example 3, a zero restriction fourth order AR process is

estimated - only the first and fourth lags are estimated; the 2nd and 3rd are

constrained to zero. MAXIT and TOL act as in NLS. The parameter covariance

matrix is displayed under the (v) option.

See Also FRML , NLS , OLS , PDL , WEIGHT , TITLE

References Beach, C.M., and J.G. MacKinnon (1978), “A Maximum Likelihood Procedure

for Regression with Autocorrelated Errors”, Econometrica, Vol. 46, pp. 51-58.

Cochrane, D., and G.H. Orcutt (1949), “Application of Least Squares Regres-

sion to Relationships Containing Autocorrelated Error Terms”, JASA Vol. 44,

pp. 32-61.

Prais, S., and C. Winsten (1954), “Trend Estimation and Serial Correlation”

Discussion Paper 383, Cowles Commission, Chicago.

6-20

ARCH

Purpose Estimates the coefficients of a linear model with autoregressive conditional

heteroscedastic errors.

Format ARCH (options) vlist ;

MAXIT = maxit ;

MAXSQZ = iter;

METHOD = meth ;

ORDER = lags ;

PDL = pdllist ;

TITLE = title ;

TOL = tolerance ;

VALUE = values ;

WEIGHT = wtname ;

Input options optional, print options.

vlist literal, required, variable list or equation name.

maxit numeric, optional, maximum number of iterations (20).

iter numeric, optional, iterations per equation (3).

lags literal, optional, AR process (1).

pdllist literal, optional, options for PDL.

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

values numeric, optional, starting value of coefficients.

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t–statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

LLF Log likelihood.

6-21

ARCH

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

Remarks The ARCH command estimates the parameters of a linear model in which the

errors exhibit non-constant variances conditional on the past variances using

an iterative procedure. Generalized ARCH, ARCH–M, and GARCH models are

described in GARCH, and multivariate garch models in MGARCH.

The user specifies a FRML in the same manner as OLS, as well as the order

of the lag structure of the residuals. GAUSSX uses the current sample to

estimate the ARCH process, automatically dropping the first “lagmax” cases

to allow for the residual structure. Estimation takes place using the method of

scoring. In the default, three iterations are used on the error component, then

three on the structural component. This can be changed using the MAXSQZ

option. Convergence is not guaranteed. The ALPHAs are not permitted to fall

below zero. Starting values for the structural component are estimated using

OLS in the default, but can be explicitly given using the VALUE option.

The coefficient vector (COEFF) consists of the structural coefficients followed

by the parameters of the error structure. When used in FORCST , only the

structural coefficients are used - thus this is equivalent to an OLS forecast.

The summary statistics are based on the variance transformed variables.

Thus the residuals should be homoscedastic. Engle’s test (Lagrange mul-

tiplier) is also shown; this is derived on the original untransformed variables.

The ARCH process requires that the data must be in core, and uses the cur-

rent sample, which must be contiguous.

See the “General Notes for Linear Models” under OLS. An example of an

ARCH model is given in test07.prg. Examples of maximum likelihood methods

of estimating linear and non-linear ARCH and GARCH models are given in

ARCH and GARCH respectively.

Example FRML eq1 y c x1 x2;

1. ARCH (p,d) eq1 ;

6-22

ARCH

2. ARCH (p,i,s) y c x1 x1(-1);

MAXSQZ = 2;

ORDER = 1 2;

3. ARCH (v) eq1;

ORDER = 1 3;

MAXIT = 40;

VALUE = 1 3 .2;

In example 1, an ARCH process is modelled based on the default – a one

order lag. Thus:

var(et) = a0 + a1 e2
t−1

The display pauses (p) after each screen, and descriptive statistics (d) are

displayed.

In the second example, the order is now two:

var(et) = a0 + a1 e2
t−1 + a2 e2

t−2

Thus three parameters are estimated for the structural form, and three for

the error structure; these latter are called ALPHA1, ALPHA2 and ALPHA3. The

MAXSQZ subcommand specifies the number of squeezes (iterations) within

each loop; the default is three. Intermediate result after each iteration are

displayed under the (i) option. The (s) option results in a full set of diag-

nostic statistics. In example 3, a zero restriction third order ARCH process is

estimated - only the first and third lags are estimated; the 2nd is constrained

to zero. MAXIT and TOL act as in NLS. The parameter covariance matrix is

displayed under the (v) option. Starting values for the structural coefficients

is given using the VALUE option.

See Also ARCH , GARCH , OLS , PDL , TITLE , WEIGHT

References Greene, W.H. (1993), Econometric Analysis 2nd ed. Macmillan, New York.

6-23

ARCH Process

Purpose Creates a vector of log likelihoods for an ARCH process.

Format z = ARCH (resid, avec);

z = ARCH T (resid, avec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for the ARCH process.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the ARCH process are esti-

mated using maximum likelihood. The ARCH model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 +
∑
i=1

αiε
2
t−i

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged ε2 terms; this is the ARCH process.

avec is a vector of parameters giving the weights for the lagged squared

residuals. The first element, which is required, gives the constant. If only a

single parameter is specified, the model is standard OLS. Note the stationarity

conditions described under GARCH.

See the “General Notes for GARCH” under GARCH, the “General Notes for

Non-Linear Models” under NLS, and the remarks under ARCH. An example is

given in test07.prg.

6-24

ARCH Process

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM g0 g1 g2;

VALUE = coeff;

PARAM a0 a1 a2;

VALUE = sigsq .1 .1;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 a1+a2 <= .999999;

FRML eq1 resid = y - (g0 + g1*x1 + g2*x2);

FRML eq2 lf = arch(resid,a0|a1|a2);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4;

In this example, a linear ARCH model is estimated, using OLS starting values.

The residuals are specified in eq1, and the log likelihood is returned from eq2.

Note the parameter restrictions to ensure that the variance remains positive.

Source GARCHX.SRC

See Also ARCH , GARCH , EQCON , FRML , ML , NLS

References Engle, R.F. (1982), “Autoregressive Conditional Heteroscedasticity with Es-

timates of the Variance of the U.K. Inflation”, Econometrica, Vol. 50, pp.

987-1007.

6-25

ARFIMA Process

Purpose Creates a vector of log likelihoods or fitted values for a fractional autoregres-

sive moving average process.

Format z = ARFIMA (y, d, phi, theta);

OPLIST = progopts ;

Input y literal, Nx1 vector of time series.

d scalar, degree of differencing.

phi literal, Px1 AR coefficient vector, or scalar zero.

theta literal, Qx1 MA coefficient vector, or scalar zero.

progopts literal, optional program options

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The Autoregressive Fractionally Integrated Moving Average (ARFIMA) pro-

cess permits the estimation of long memory models. The ARFIMA (p, d, q)
process is given by:

φ(L)(1 − L)dyt = θ(L)εt

where:

φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp

θ(L) = 1 + θ1L + θ2L2 + · · · + θqLq

and where L is the backward shift operator, and d is the fractional degree of

differencing.

The coefficients of the ARFIMA process are estimated using either ML or NLS.

y should be detrended, and have zero mean.

The program control options are specified in oplist. The options available

are:

CONSTANT/[NOCONST] Specifies whether a constant is to be included. CON-

STANT should normally be specified for non-differenced series with

6-26

ARFIMA Process

non-zero mean, unless the constant is explicitly specified as a pa-

rameter.

Both stationary and invertibility conditions need to be satisfied. GAUSSX pro-

vides a routine called MROOT, which returns the value of the largest root which

must have a modulus less than unity. In addition, besides the normal AR

and MA requirements for stationarity and invertibility, requirements on d in-

clude d > −1 for invertibility, and −.5 < d < .5 for stationarity. Consequently,

constrained optimization is usually required.

Estimated values are available after an NLS estimation using the FORCST com-

mand. If a range is given, actual values are used up to the first date in the

range, and forecast values for the dates up to the second date. Two meth-

ods are available - Naive and Best Linear Predictor (BLP). Forecast standard

errors are available using METHOD = STDERR.

An example of ARFIMA is given in test43.prg.

See the “General Notes for Non-Linear Models” under NLS.

Example PARAM d phi1 phi2 theta1 theta2;

VALUE = .5 .5 0 .5 0;

FRML eq1 y = arfima(y, d, phi1|phi2, theta1|theta2);

FRML ec1 mroot(phi1|phi2) <= .9999;

FRML ec2 mroot(theta1|theta2) <= .9999;

NLS (p,d,i) eq1

EQCON = ec1 ec2;

OPLIST = constant;

FORCST yhat;

METHOD = fit blp;

RANGE = 1990 1999;

This example demonstrates how a (2, d, 2) ARFIMA model is estimated. d

is the fractional dimension, and there are two AR coefficients (phi1, phi2)

and two MA coefficients (theta1, theta2). The model is estimated using

constrained NLS, where the constraints are specified in ec1 and ec2, and

where MROOT is a GAUSSX routine for returning the value of the largest root.

6-27

ARFIMA Process

Source ARFIMAX.SRC

See Also ARFIMA , ARIMA , MROOT , NLS , VARMA

References Box, G.E.P., Jenkins, G.M., and Reinsel, G. C. (1994). Time Series Analysis,

Forecasting and Control, San Francisco: Holden-Day.

Doornik, J.A. and Ooms, M. (1999). “A package for estimating, forecasting

and simulating ARFIMA models: Arfima package 1.0 for Ox”, Discussion pa-

per, Nuffield College, Oxford.

Sowell, F. (1992). “Maximum likelihood estimation of stationary univariate

fractionally integrated time series models”, Journal of Econometrics, Vol. 53,

pp. 165-188.

6-28

ARIMA

Purpose Identify, estimate and forecast the autoregressive integrated moving average

model.

Format ARIMA (options) vname ;

MAXIT = maxit ;

METHOD = meth ;

NAR = nar ;

NDIFF = ndiff ;

NMA = nma ;

NSAR = nsar ;

NSDIFF = nsdiff ;

NSMA = nsma ;

OPLIST = progopts ;

PERIODS = periods ;

RANGE = rangelist ;

DISPLAY = screen ;

TOL = tolerance ;

VLIST = fcstname ;

Input options optional, print options.

vname literal, required, variable name.

maxit numeric, optional, maximum number of iterations (20).

meth literal, optional, algorithm list (GAUSS GAUSS GAUSS).

nar numeric, optional, number of autoregressive terms (0).

ndiff numeric, optional, degree of differencing (0).

nma numeric, optional, number of moving average terms (0).

nsar numeric, optional, number of seasonal AR terms (0).

nsdiff numeric, optional, degree of seasonal differencing (0).

nsma numeric, optional, number of seasonal MA terms (0).

progopts literal, optional, options for program control.

periods numeric, optional, number of lags for correlogram (15).

rangelist numeric, optional, pairs of ranges for forecasting.

screen literal, optional, screen mode (GRAPH).

tolerance numeric, optional, param. convergence tolerance (.001).

fcstname literal, optional, forecast variable name.

Values in parentheses are the default values.

6-29

ARIMA

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

LLF Log likelihood.

VCOV Parameter covariance matrix.

PSTAR Vector of φ∗.

TSTAR Vector of θ∗.

Remarks The ARIMA command undertakes all three parts of the Box-Jenkins process

- identification, estimation and forecasting. The ARIMA (p, d, q) process is

given by:

The ARIMA (p, q) process is given by:

φ(L)(1 − L)dyt = θ(L)εt

where:

φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp

θ(L) = 1 + θ1L − θ2L2 − · · · − θqLq

and where L is the backward shift operator, and d is the degree of differenc-

ing.

The ARIMA process requires that vname must be in core, and uses the current

sample, which must be contiguous. It automatically drops observations for

the differencing and AR processes.

Print options include c —print correlogram of the estimated residuals, d —

print descriptive statistics, i —print parameters at each iteration, p —pause

after each screen display, and q —quiet - no screen or printed output. Addi-

tional information is available through the on-line help (Alt-H).

6-30

ARIMA

The program control options are specified in progopts. The options available

are:

[IDENTIFY]/NOIDENT Specifies whether the identification process is to

be undertaken.

[ESTIMATE]/NOEST Specifies whether the model is to be estimated.

[FORECAST]/NOFORCST Specifies whether the forecast process is to be

undertaken.

CONSTANT/[NOCONST] Specifies whether a constant term is to be in-

cluded in the model.

[FIT]/RESID Specifies the type of forecast mode.

STATIC/[DYNAMIC] Specifies whether the actual or predicted values of

vname are used in the forecast process.

PARAM/[NOPARAM] Specifies whether the parameter starting values are

to be given in a PARAM or a CONST statement, or whether

they are to be evaluated using the Yule-Walker conditions.

[PLOT]/NOPLOT Specifies whether the correlogram and partial autocor-

relogram are to be plotted.

See the “General Notes for Non-Linear Models” under NLS. Multi-equation

transfer functions can be estimated using the NLS command. Examples of

both ARIMA and transfer function estimation are given in test11.prg.

Identification The identification process is required to determine the degree of differencing

necessary to generate a series that is stationary. GAUSSX first provides the

correlogram (AC) and partial autocorrelogram (PAC) for the vector vname

before differencing, and the associated Ljung-Box Q statistics. A plot of the

AC and PAC is also provided. This output is then repeated for the series

after differencing. Under the default (DISPLAY = GRAPH), the correlograms are

displayed using the PQG screen mode. - see ‘General Notes for Graphs”

in GRAPH. The current sample is used, and GAUSSX drops the first ndi f f +
f req ∗ nsdi f f terms for the differenced series, where freq corresponds to the

type of data set specified in the CREATE command.

Estimation The estimation process requires the user to specify the order of the AR

(nar, nsar) and MA (nma, nsma) components, as well as specifying whether

6-31

ARIMA

a constant is to be included (OPLIST = CONSTANT). A constant should be

specified for non-differenced series with non-zero mean.

GAUSSX will automatically estimate starting values of the parameters of the

model, using the Yule-Walker equations. These parameters are called PHI1,

PHI2, etc. for the AR parameters, THETA1, THETA2 for the MA parameters,

GAMMA1, GAMMA2 for the seasonal AR parameters, and DELTA1, DELTA2 for

the seasonal MA parameters. If the option OPLIST = PARAM is specified, start-

ing values for the coefficients must be given by the user in a PARAM or a

CONST statement. Thus, if some of the parameters are to be restricted dur-

ing an ARIMA estimation, they should be specified previously in a CONST

statement.

The estimation use the NLS routines, and all the non-linear options are avail-

able. The MA component is evaluated recursively each time the residuals are

estimated. GAUSSX uses the current sample, and automatically drops the

first ndi f f + nar + f req ∗ (nsdi f f + nsar) observations. Initial values of ε are

set to the unconditional expected value of zero for the first nma+ nsma ∗ f req
observations - that is “back-forecasting” is not employed. Parameter values

at the end of the estimation are stored both under their individual names, as

well as in a global vector called COEFF. A correlogram of the residuals is pro-

duced if the c option is specified in options. The roots of both the AR and the

MA process are reported such that stability and invertibility can be assessed.

Forecasting The raw coefficients are transformed into the φ∗ and θ∗ vectors, which can

be used on the original time series. These are globally available as PSTAR

and TSTAR. A separate forecast is undertaken for each pair of sample dates

specified in rangelist, or for the last 15 observations if RANGE is not specified.

Under the default (DYNAMIC), the forecasts are based on the actual values of

vname up to the first element in the pair, and forecast values up to the last

element of the pair. Forecasts based on the actual residuals derived during

the estimation process can be achieved by using the STATIC option. The

vector that is forecast is the fitted value of vname, unless OPLIST = RESID

is specified, in which case the forecast is the vector of residuals (ε). The

forecast for the last pair of sample points specified in rangelist is stored as a

GAUSSX vector under the name given in fcstname.

6-32

ARIMA

Forecast values for an ARIMA process can also be obtained using the FORCST

command immediately following an ARIMA estimation. Both the MODE and

the RANGE options must be specified.

Example 1. SMPL 1956 1974;

ARIMA (p,c,d) y;

NAR = 1; NDIFF = 1; NMA = 2;

OPLIST = noplot noforcst;

2. SMPL 19681 19854;

ARIMA (p,c) q;

NAR = 2; NMA = 2; NSMA = 1;

OPLIST = const;

RANGE = 19831 19874 19841 19874;

VLIST = qfit;

3. SMPL 1962 1988;

PARAM phi1 phi2 theta1;

VALUE = 0 .6 .7;

CONST phi1;

ARIMA (p) gnp;

NAR = 2; NMA = 1; NSAR = 1; NDIFF = 1;

OPLIST = param noident;

MAXIT = 40;

Example 1 shows how an ARIMA(1,1,2) is undertaken on the vector y. Iden-

tification is carried out, followed by estimation, but no forecast is undertaken,

nor are the AC and PAC plots produced. A correlogram of the residuals is

produced under the c option.

Example 2 shows how a seasonal MA process is modelled. The original

series, q is used, since no differencing is specified. Two forecasts are gener-

ated, the first from 19831 to 19874, and the second from 19841 to 19874; the

latter forecast is stored as the variable qfit, and can be used in subsequent

GAUSSX operations.

6-33

ARIMA

A restricted model is estimated in Example 3: phi1 is restricted to zero

through the previous CONST statement; while phi2 and theta1 take start-

ing values of .6 and .7 respectively. GAMMA1, the seasonal MA parameter is

not specified, and so takes an initial value of zero. The identification process

is bypassed, and after estimation the forecast values for the last 15 observa-

tions is displayed, but not saved.

See Also AR , CONST , EXSMOOTH , FORCST , NLS , PARAM

References Box, G.P., and G.M. Jenkins (1976), Time Series Analysis: Forecasting and

Control, Holden-Day, New York.

Ljung, G.M., and G.E.P. Box (1978), “On a Measure of Lack of Fit in Time

Series Models”, Biometrika, Vol. 66, pp. 297-303.

6-34

ARIMA Process

Purpose Creates a vector of log likelihoods or fitted values for an autoregressive inte-

grated moving average process.

Format z = ARIMA (y, d, phi, theta);

OPLIST = progopts ;

Input y literal, Nx1 vector of time series.

d scalar, degree of differencing.

phi literal, Px1 AR coefficient vector, or scalar zero.

theta literal, Qx1 MA coefficient vector, or scalar zero.

progopts literal, optional program options

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The ARIMA (p, d, q) process is given by:

φ(L)(1 − L)dyt = θ(L)εt

where:

φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp

θ(L) = 1 + θ1L + θ2L2 + · · · + θqLq

and where L is the backward shift operator, and d is a non-negative integer.

The coefficients of the ARIMA process are estimated using either ML or NLS. d
is an integer constant. When d = 0, this becomes the ARMA model. y should

be detrended, and have zero mean.

The program control options are specified in oplist. The options available

are:

CONSTANT/[NOCONST] Specifies whether a constant is to be included. CON-

STANT should normally be specified for non-differenced series with

non-zero mean, unless the constant is explicitly specified as a pa-

rameter.

6-35

ARIMA Process

Both stationary and invertibility conditions need to be satisfied. GAUSSX pro-

vides a routine called MROOT, which returns the value of the largest root which

must have a modulus less than unity. Consequently, constrained optimization

is usually required.

See ARFIMA for details on forecasting, and the “General Notes for Non-Linear

Models” under NLS. An example of ARIMA is given in test43.prg.

Example FRML eq1 llf = arima(y1, d, phi1, theta1);

FRML ec1 mroot(phi1) <= .9999;

FRML ec2 mroot(theta1) <= .9999;

PARAM phi1 theta1;

VALUE = .5 .5;

CONST d;

VALUE = 1;

ML (p,d,i) eq1;

EQCON = ec1 ec2;

OPLIST = constant;

In this example, an ARIMA (p = 1, d = 1, q = 1) model is estimated using

constrained ML, where the constraints are specified in ec1 and ec2, and

where MROOT is a GAUSSX routine for returning the value of the largest root.

Source ARFIMAX.SRC

See Also ARFIMA , ARIMA , MROOT , NLS , VARMA

References Box, G.E.P., Jenkins, G.M., and Reinsel, G. C. (1994). Time Series Analysis,

Forecasting and Control, San Francisco: Holden-Day.

6-36

ARMA Process

Purpose Creates a vector of log likelihoods or fitted values for an autoregressive mov-

ing average process.

Format z = ARMA (y, phi, theta);

OPLIST = progopts ;

Input y literal, Nx1 vector of time series.

phi literal, Px1 AR coefficient vector, or scalar zero.

theta literal, Qx1 MA coefficient vector, or scalar zero.

progopts literal, optional program options

Output z Nx1 vector of log likelihoods (ML).

z Nx1 vector of fitted values (NLS).

Remarks The ARMA (p, q) process is given by:

φ(L)yt = θ(L)εt

where:

φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp

θ(L) = 1 + θ1L + θ2L2 + · · · + θqLq

and where L is the backward shift operator.

The coefficients of the ARMA process are estimated using either ML or NLS.

When there is no MA component, this becomes the AR model. y should be

detrended, and have zero mean.

The program control options are specified in oplist. The options available

are:

CONSTANT/[NOCONST] Specifies whether a constant is to be included. CON-

STANT should normally be specified for non-differenced series with

non-zero mean, unless the constant is explicitly specified as a pa-

rameter.

6-37

ARMA Process

Both stationary and invertibility conditions need to be satisfied. GAUSSX pro-

vides a routine called MROOT, which returns the value of the largest root, which

must have a modulus less than unity. Consequently, constrained optimization

is usually required.

See ARFIMA for details on forecasting, and the “General Notes for Non-Linear

Models” under NLS. An example of ARMA is given in test43.prg.

Example FRML eq1 y1= arma(y1, phi1|phi2, theta1);

FRML ec1 mroot(phi1|phi2) <= .9999;

FRML ec2 mroot(theta1) <= .9999;

NLS (p,d,i) eq1;

EQCON = ec1 ec2;

OPLIST = constant;

In this example, eq1 returns the vector of fitted values based on an AR coeffi-

cient matrix phi1|phi2 and an MA coefficient theta1. These are estimated

using constrained NLS, where the constraints are specified in ec1 and ec2,

and where MROOT is a GAUSSX routine for returning the value of the largest

root.

Source ARFIMAX.SRC

See Also ARFIMA , ARIMA , MROOT , NLS , VARMA

References Hamilton, J.D. (1994), Time Series Analysis, Ch. 11.

6-38

BETA D Process

Purpose Creates a vector of log likelihoods for a beta process.

Format z = BETA D (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, index of the first shape parameter.

pvec literal, second shape parameter.

Output z Vector of log likelihoods.

Remarks The beta model is used to estimate duration data; however, for a beta pro-

cess, 0 ≤ y ≤ 1.

The expected value of shape1i is parameterized as:

E(shape1i) = exp(indxi).

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β and pvec, are estimated using maximum likelihood; thus

this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and the second column taking a value of unity if censored,

else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-39

BETA D Process

Example PARAM b0 b1 b2;

PARAM shape2;

FRML eq0 shape1 = b0 +b1*arrtemp + b2*plant;

1 FRML ex1 llfn = beta_d(fail, shape1, shape2);

ML (p,i) eq0 ex1;

2 FRML ex2 llfn = beta_d(fail˜censor, shape1, shape2);

ML (p,i) eq0 ex2;

In example 1, a linear exponential beta model is estimated using maximum

likelihood, with the index defined in eq0, and the log likelihood in eq1. Exam-

ple 2 shows a similar estimation when some of the data is censored. In both

examples, fail takes values in the range {0:1}.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-40

BITWISE

Purpose Creates vectors using bitwise arithmetic.

Format z = IAND (x, y);

z = IEQV (x, y);

z = IOR (x, y);

z = INOT (x);

z = ISHFT (x, s);

z = IXOR (x, y);

q = RADIX (x, b);

z = RADIXI (q, b);

Input x Nx1 vector.

y Nx1 vector.

s scalar, shift parameter.

b scalar, base.

q Nx bitmax matrix.

bitmax global scalar, wordlength (default = 16)

Output z Nx1 result vector.

q Nx bitmax matrix.

Remarks The bitwise routines allow for logical operations at the bit level.

AND Bitwise AND of x and y.

IEQV Bitwise EQV of x and y.

IOR Bitwise OR of x and y.

INOT Bitwise complement of x.

ISHFT Bitwise shift of x by s places. Positive values of s shift to the right,

negative to the left.

IXOR Bitwise XOR of x and y.

RADIX Convert decimal to base b. Converts the Nx1 decimal vector x to

the nx bitmax matrix of the radix of x to the base b.

RADIXI Convert base b to decimal. Converts the Nx bitmax matrix q to

the base b to an Nx1 decimal vector.

6-41

BITWISE

The bitwise routines are pure GAUSS code, and are used independently of

GAUSSX.

Example library gaussx ;

x = 7;

y = 11;

z = iand(x,y);

z = 3

This example evaluates the bitwise AND of 7 and 11.

Source BITWISE.SRC

6-42

CATALOG

Purpose Sets or displays a user specified description associated with a GAUSSX vari-

able.

Format CATALOG vname, descript ;

CATALOG (options) vlist ;

TITLE = title ;

Input options optional, print options.

vname literal, required, variable name.

descript string, required, description.

vlist literal, optional, variable list.

title string, optional, title.

Remarks The first form of the CATALOG statement associates the description specified

in the string descript with the GAUSSX variable specified in vname. The sec-

ond form displays the descriptions associated with the variables specified in

vlist. If vlist is not specified, all the vectors currently defined in the current

GAUSSX workfile will be displayed

The variables specified in vname or vlist must exist in the current GAUSSX

workfile, otherwise an error will be returned. When a SAVE command is exe-

cuted, the catalog file is saved with an .fst extension. An OPEN command will

read in a catalog file if it exists.

Print options include p – pause after each screen display.

CATALOG requires GAUSS version 3.2 or later. See test02.prg for an example

creating a catalog, and test03.prg for displaying a catalog.

6-43

CATALOG

Example 1. CATALOG impt

Imports from all developing countries.\r

Source: World Bank. ;

2. CATALOG (p) x1 x2 x3 ;

3. CATALOG;

TITLE = 1994 Data Base ;

In example 1, a description is specified for the variable impt. Note the use of

\r to create a new line in a string. The second example produces a catalogue

of the descriptions for x1, x2 and x3, and pauses (p) after each display. The

third example displays the descriptions for the entire current GAUSSX workfile.

See Also COVA , TITLE

6-44

CDF

Purpose Computes the cumulative density function for the specified distribution.

Format y = CDF (pdfname, xh, p1, p2, p3);

Input pdfname string, the name of the probability distribution.

xh NxK matrix, the upper limits for the specified distribution.

p1 NxK matrix or scalar, first parameter for the specified distribution.

p2 NxK matrix or scalar, second parameter for the specified distribu-

tion.

p3 NxK matrix or scalar, third parameter for the specified distribution.

Output y NxK matrix of cumulative probabilities.

Remarks This procedure returns a matrix of cumulative probabilities for the specified

distribution.

See the “General Notes for Probability Density Functions” under PDF.

CDF is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

a = 2; b = 4;

let xh = 1 3 10 20;

y = cdf(f,xh,a,b,0);

y’ = .5555 .8400 .9722 .9917

This example evaluates the cdf for an F distribution with 2 and 4 degrees of

freedom, at the values shown in xh.

Source PDFX.SRC

See Also CDFI, CDFMVN, PDF, RND, STATLIB

6-45

CDFI

Purpose Computes the inverse cumulative density function for the specified distribu-

tion.

y = CDFI (pdfname, prob, p1, p2, p3);

Input pdfname string, the name of the probability distribution.

prob NxK matrix of probabilities.

p1 NxK matrix or scalar, first parameter for the specified distribution.

p2 NxK matrix or scalar, second parameter for the specified distribu-

tion.

p3 NxK matrix or scalar, third parameter for the specified distribution.

Output y NxK matrix of inverse cumulative probabilities.

Remarks This procedure returns a matrix of inverse cumulative probabilities for the

specified distribution. prob must lie in the [0 1] interval.

See the “General Notes for Probability Density Functions” under PDF.

CDFI is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

mu = 1; s2 = 1;

let prob = .025 .975;

y = cdfi(normal,prob,mu,s2,0);

y’ = -.9600 2.9600

This example evaluates the inverse cdf for a normal distribution with unit

mean and variance, for the values shown in prob.

Source PDFX.SRC

See Also CDF, PDF, RND, STATLIB

6-46

CDFMVN

Purpose Computes the cumulative density function of the multivariate normal density

function (lower tail), using recursive integration.

Format y = CDFMVN (xh, omega);

Input

Input xh Kx1 or KxN matrix, the upper limits of the K-variate normal den-

sity function.

omega KxK symmetric, positive definite covariance matrix of the K-variate

normal density function.

cdfmin global scalar, lower bound (-10).

cdftol global scalar, tolerance to skip a branch (1e-10).

cdfpnt global scalar, print progress. (0)

cdford global scalar, the order of the integration 2, 3, 4, 6, 8, 12, 16, 20,

24, 32, 40. (24)

Output y Nx1 vector of probabilities.

Remarks This procedure returns the orthant probability of an K-dimensional multivari-

ate normal density function, evaluated using recursive integration.

The GAUSS function of the same name is used – note however that the sec-

ond argument is the covariance matrix, as opposed to the correlation matrix.

CDFMVN is pure GAUSS code, and can be used independently of GAUSSX.

6-47

CDFMVN

Example library gaussx ;

let xh = 1 2 1;

let omega[3,3] = 1 .8 .6 .8 1 .2 .6 .2 1;

p = cdfmvn(xh,omega);

This computes the trivariate normal distribution function over the specified

range.

Source CDFMVN.SRC

See Also QDFN, CDFBVN, CDFTVN

6-48

CLUSTER

Purpose Computes a hierarchical cluster tree and dendrogram.

Format CLUSTER (options) varlist ;

CATNAME = atomname ;

METHOD = method ;

MODE = metric ;

OPLIST = progopts ;

ORDER = weights ;

TITLE = title ;

VALUE = value ;

Input options optional, print options.

varlist literal, required, variable list.

atomname literal, optional, a list of element names.

method literal, optional, linkage distance method. (SINGLE)

metric literal, optional, metric mode list (EUCLID).

progopts literal, program control options.

weights literal, metric weights.

title string, optional, title.

value literal, optional, cutoff values.

Remarks This procedure creates an hierarchical cluster tree, and optionally graphs

the tree - a dendrogram. It can be used in the standard manner of deriving

categories across spatial dimensions, or can be used to group observations

that are similar based on economic or other characteristics.

CLUSTER produces a table showing the members of each cluster conditional

on the cutoff distance specified in value. If value is small, the “gluing” distance

is small, resulting in many clusters with few elements per cluster, while if

value is large, one is further down the tree, with few clusters, each with many

elements. If value is a vector, a separate table is produced for each element.

The hierarchical cluster tree algorithm depends crucially on the distance met-

ric used, as well as the method used to define a cluster. The distance metric

is defined in metric. Define drs as the distance between vectors xr and xs.

The available metric modes are:

6-49

CLUSTER

EUCLID Euclidian distance. d 2
rs = (xr−xs)(xr−xs)′. This is best suited where

the data has the same units of measurement over all dimensions

(default).

STD Standardized Euclidian distance. d 2
rs = (xr− xs)D−1(xr− xs)′ where

D is the diagonal matrix of the variance of the data matrix X.

MAHAL Mahalanobis distance. d 2
rs = (xr − xs)V−1(xr − xs)′ where V is the

covariance matrix of the data matrix X. Recommended for when

different measurement units are used for different characteristics.

CITY City Block (or Manhattan) metric. drs =
∑n

i=1 | (xri − xsi) |.
CHEB Chebyshev metric. drs = maxi=1,...,n | (xri − xsi) |.

MINK Minkowski metric. drs =
(∑n

i=1 | xri − xsi |
ρ
)1/ρ

. The value of ρ is

specified in weights.

The cluster definition is defined in method; the available linkages are:

SINGLE Single linkage, or nearest neighbour, This uses the shortest

distance between objects in two clusters (default).

COMPLETE Complete linkage, or furthest neighbour, This uses the largest

distance between objects in two clusters.

AVERAGE Average linkage. This uses the average distance between all

pairs of objects in two clusters.

CENTROID Centroid linkage. This uses the distance between the cen-

troids of two clusters.

Each element of a cluster can be given an ID in the dendrogram. This is

defined in atomname. If a single literal is used, then this becomes the root;

the default is Obs. Alternatively, a complete list of element names can be

specified – there must be as many names as the current sample.

The program control options are specified in progopts. The options available

are:

PLOT/[NOPLOT] Specifies whether a dendrogram is produced.

FORECAST = vector of cluster ID for each observation, based on the last

cluster table produced. This vector is available in the GAUSSX

workspace.

6-50

CLUSTER

Print options include d —descriptive statistics, p —pause after each screen

display, and q —no screen output.

An example of CLUSTER is given in test31.prg.

Example SMPL 1 100;

CLUSTER (p,d,s) age salary sex educ;

CATNAME = # ;

MODE = mahal;

TITLE = Socio Economic Cluster ;

VALUE = .5 1 4;

OPLIST = plot forecast=clusterid;

PRINT (p) clusterid;

This example generates an hierarchical cluster tree for 100 elements, based

on four characteristics age, salary, sex and educ. MODE is set to the Ma-

halanobis metric to account for the differing units of measurement between

the four characteristics. A dendrogram (cluster tree) is created by specifying

the PLOT option in OPLIST. Three cut-off distances are specified in VALUE,

resulting in three tables showing the number of clusters and composition of

each at each of the three cut-off distances. A vector called clusterid is

created in the GAUSSX workspace that contains the cluster number for each

observation, based on a cut-off distance of 4.

See Also TABULATE

6-51

COMMENT

Purpose To provide a comment on a GAUSSX command file.

Format ? statement ;

Input statement any statement - text, formulae or comments.

Remarks A ? at any position in a command results in the rest of that line being treated

as a comment. These comments do not appear in the output file. For other

types of comments, see the examples below.

Example 1. ? OLS y c x1 x2;

2. OLS z c x1 x2; ? This is a comment

3. OLS z c x1 x3; // This is a GAUSS syntax comment

4. /*

This type of comment blocks off a block of text

COVA x1 x2;

x3 = rndu(20,10);

*/

5. @ This is a command file listing comment @ ;

6. @@ This is an execution time comment ;

In example 1, the OLS is not carried out since the ? appears to the left of the

command. This comment does not appear in the output file. In example 2,

the OLS is carried out, and the comment is ignored. Example 3 shows how a

comment is ignored using GAUSS syntax. Example 4 shows how a block of

code can be commented out, again using GAUSS syntax.

Example 5 shows the syntax for a comment that is displayed as part of the

command file listing, again using standard GAUSS syntax. Example 7 shows

how a comment can be generated at execution time - such as when one

wants titles on the output listing.

6-52

COMMENT

See Also GAUSS

6-53

CONST

Purpose Defines constants specified in non-linear formulae used by GMM, FIML, ML

and NLS.

Format CONST plist ;

ORDER = order ;

SYMBOL = rootname ;

VALUE = values ;

Input plist literal, required, name list.

order numeric, optional, matrix order.

rootname literal, optional, element name.

values optional, starting values.

Remarks The CONST statement adds the variables in plist to the list of GAUSSX param-

eters, updates the value of the parameters if values is specified, and creates

global symbols for each parameter in plist, initialized at the current value.

Constants must be initialized before estimating an equation in which such

constants appear. If VALUE is not specified, each constant in plist is given

a default value of zero. Unlike coefficients specified in a PARAM statement,

constants remain fixed during a non-linear estimation. If values is specified,

the number of elements must match the number of constants given in plist.

values can also be the name of a vector. Thus following a linear estimation,

the coefficient values are stored in a vector called COEFF. These values can

be used to set the values for a set of constants by setting VALUE = COEFF.

Note however that the number of elements in COEFF must be the same as the

number of terms in plist.

Example 1. CONST a0 ;

2. CONST b0 b1 b2;

VALUE = .3 0 -.2;

3. OLS y c x1 x2 x3;

CONST a0 a1 a2 a3;

VALUE = COEFF;

6-54

CONST

4. aval = rndu(4,3);

CONST amat;

SYMBOL = a;

VALUE = aval;

In example 1, a single constant is specified. If a0 had previously been defined

as a parameter, it maintains its previous value; if not, its value is set to zero. In

the second example, starting values are specified by use of the VALUE option.

In example 3, the coefficients from the previous regression are stored as a

vector (COEFF); in this case a0 will be given the value of the intercept, a1 the

coefficient on x1, etc. Example 4 shows how a matrix of random constants,

named a11 to a43, can be created.

See Also ANALYZ, FRML, PARAM

6-55

COPULA

Purpose Computes a copula.

Format s = COPULA (n, cx, rtype);

Input n scalar, number of observations.

cx KxK correlation matrix, or scalar correlation coefficient.

rtype scalar or character, correlation method.

Output s NxK matrix of correlated uniform variates.

Remarks Copulas are functions that describe dependencies among variables, and pro-

vide a way to create distributions to model correlated multivariate data. Using

a copula, a data analyst can construct a multivariate distribution by specifying

marginal univariate distributions, and choosing a particular copula to provide

a correlation structure between variables. There are a number of different

families of copulas; in this context we use a Gaussian copula.

if cx is either a Kendall’s or Spearman rank correlation matrix, then the in-

verse CDF of s will have the same correlation structure, irrespective of the

distribution chosen. This is known as the Inverse method.

Three correlation methods are available; the method is selected by specifying

rtype:

[0 or ’p’] Pearson.

[1 or ’k’] Kendall Tau b.

[2 or ’s’] Spearman Rank

COPULA is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

let rmat[3,3] = 1 .5 .2 .5 1 .6 .2 .6 1;

q=copula(1000,rmat,1);

v1=normal_cdfi(q[.,1],0,1);

v2=expon_cdfi(q[.,2],2);

v3=gamma_cdfi(q[.,3],1.5,2.5);

6-56

COPULA

rmat;

1.0000000 0.50000000 0.20000000

0.50000000 1.0000000 0.60000000

0.20000000 0.60000000 1.0000000

corr(v1˜v2˜v3,1);

1.0000000 0.49734134 0.19561562

0.49734134 1.0000000 0.60317918

0.19561562 0.60317918 1.0000000

q is a 1000x3 copula matrix with a Kendall Tau correlation structure given by

rmat. This copula is then used to create three correlated random deviates

drawn from the normal, exponential and gamma distributions.

Source COPULA.SRC

See Also CORR, MVRND

6-57

CORDIM

Purpose Computes the correlation dimension for a time series or set of vectors.

Format CORDIM (options) vlist ;

MAXSTEP = step ;

ORDER = order ;

PERIODS = periods ;

RANGE = range ;

WEIGHT = wtname ;

Input options optional, print options.

vlist literal, required, variable list.

maxstep literal, optional, number of steps (20)

order literal, required, embedding dimension

periods literal, optional, lags. (1 1)

range literal, optional, range for r.

Output _CORDIM Correlation dimension.

_CORINT Vector of correlation integrals.

Remarks The correlation dimension is the fractal dimension of the phase space of a

time series. It is estimated by calculating the separation between every pair

of N data points and sorting them into bins of width dr proportional to r, and

then estimating the slope of a regression between ln(Cm) and ln(r), where

Cm, the correlation integral, is the size of each bin.

If vlist contains more than one variable name, it is assumed that each vari-

able represents one dimension of the phase space, and thus the embedded

dimension is the number of variables in vlist. Otherwise, the minimum num-

ber of dynamical variables needed to model the dynamics of the system - the

embedded dimension - must be specified in order. Similarly, the lag used

to reconstruct a phase space from a time series is specified as the first ele-

ment of periods, and the Theiler window for discarding autocorrelated data is

specified as the second element of periods.

6-58

CORDIM

The correlation dimension is given by

lim
r→0

d ln(Cm)/d ln(r)

Ideally, this should be linear in ln(r), with r as small as possible. A plot of

ln(Cm) vs ln(r) is displayed if the g print option is specified. The range for

ln(r) is selected automatically, but can be user specified in range, and the

number of steps can be specified in maxstep.

Print options include g —display graphic, p —pause after each screen display,

and q —quiet - no screen or printed output. Additional information is available

through the on-line help (Alt-H). An example is given in test49.prg.

Example 1. CORDIM (p) x y;

2. CORDIM (p,g) z;

ORDER = 2;

PERIODS = 1 4;

MAXSTEP = 40;

RANGE = -5 -1;

In example 1, the correlation dimension is derived for the 2 dimensional state

phase given in x and y. In example 2, the correlation dimension of a time

series is investigated, using an embedded dimension of 2, a default time lag

of 1, and a Theiler correction of 4 periods. Instead of using the default range

of r, a range of ln(r) of -5 to -1 is specified, with 40 steps. A graph of ln(Cm)
vs ln(r) is displayed under the g option.

See Also LYAPUNOV

References Grassberger, P. and I. Procaccia. (1983), “Characterization of Strange Attrac-

tors”, Physical Review Letters Vol. 50, pp 346-369.

6-59

CORR

Purpose Computes a correlation matrix for different correlation types

Format cx = CORR (x, rtype);

Input x NxK matrix of data.

rtype scalar or character, correlation method.

Output cx KxK correlation matrix.

Remarks This procedure returns the specified correlation matrix.

Three correlation methods are available; the method is selected by specifying

rtype:

[0 or ’p’] Pearson.

[1 or ’k’] Kendall Tau b.

[2 or ’s’] Spearman Rank

CORR is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

cx = corr(x,2);

This computes the Spearman rank correlation matrix for the data, x.

Source COPULA.SRC

See Also COVA

6-60

COVA

Purpose Computes descriptive statistics, covariance and correlation matrix, and for a

single variable the autocorrelogram.

Format COVA (options) vlist ;

DISPLAY = screen ;

FMTLIST = fmtopts ;

GROUP = grouplist ;

PERIODS = periods ;

TITLE = title ;

VLIST = elist ;

WEIGHT = wtname ;

Input options optional, print options.

vlist literal, required, variable list.

screen literal, optional, screen mode (GRAPH).

fmtopts literal, optional, format options.

grouplist literal, optional, group variable list.

periods numeric, optional, number of lags.

title string, optional, title.

elist literal, optional, variable list.

wtname literal, optional, weighting variable.

Output MEANS Vector of means.

STDS Vector of standard deviations.

MINS Vector of minimums.

MAXS Vector of maximums.

SUMS Vector of sums.

VCOV Parameter covariance matrix.

VCOR Correlation matrix.

Remarks The variables specified in “Outputs” are returned as global variables.

The default print options result in no printed output. Print options includes d —

descriptive statistics, c —correlation matrix s —singular value decomposition,

v —covariance matrix, p —pause after each screen display.

If a single vector is given as the argument list, the correlogram and partial au-

tocorrelogram are displayed if the c option is used. The number of lags used

6-61

COVA

is 1/3 of the sample size, or periods. If DISPLAY = GRAPH, the correlograms

are displayed using the PQG screen mode. - see ‘General Notes for Graphs”

in GRAPH.

Lagged variables can be used by specifying the lag in parenthesis.

Weighting is available using the WEIGHT option. Formatting is available using

the FMTLIST option. Grouped output is available using the GROUP option.

Singular value decomposition analysis (SVD) is available using the (s) op-

tion. The entire matrix of variables specified in vlist must be able to fit in core.

Each vector is scaled by the program such that its norm is unity. Variables

that are specified as logs should first be e-scaled – this is carried out if the

vector is included in elist.

Example 1. COVA x1 x2 x3;

2. COVA (d,v,p) x1 x2 x3(-1);

3. COVA (p,d,c) x1;

TITLE = Analysis of x1 ;

4. GENR lnx1 = ln(x1);

COVA (p,s) lnx1 x2 x3;

VLIST = lnx1;

In example 1, the covariance and correlation matrices of the vectors x1, x2,

and x3 are returned as global variables; no output is produced. The same

analysis is carried out in example 2 but with x3 replaced by x3 lagged once;

in this case, descriptive statistics (d) and the covariance matrix (v) are

displayed, and execution pauses (p) after each screen display. In example

3, where a single vector x1 is given as the argument list, the correlogram

and partial autocorrelogram are displayed since the c option is given. A user

specified title is used. In example 4, SVD is carried out (s) on the matrix

consisting of the vectors lnx1, x2, and x3. lnx1 is first e-scaled since it is

a variable that is measured as a log, and not as a level.

6-62

COVA

See Also FMTLIST, GROUP, PRINT, TABULATE, TITLE, WEIGHT

6-63

COX Process

Purpose Creates a vector of log likelihoods for a Cox proportional hazards model.

Format z = COX (y, indx, pflag);

Input y literal, dependent variable - duration.

indx literal, index.

pflag literal, ties indicator.

Output z Vector of log likelihoods.

Remarks The Cox proportional hazards model is specified as:

H(t, x, β) = H0(t) exp indx

where H(t, x, β) is the hazard function, and H0(t) is the baseline hazard func-

tion.

indx is a function of explanatory variables, xi:

indxi = f (xi, β)

The log partial likelihood function is defined as:

L(β) =
n∑

i=1

δ

 f (xi, β) − ln
∑

j∈R(yt))

exp(f (xi, β))


where R(t) = { j|y j ≥ t}. The coefficients, β, of the index f (xi, β) are estimated

using maximum likelihood; thus this can be used for linear or non-linear mod-

els. The Cox model conventionally uses a linear index. For reasonable base-

line interpretations, the covariates should be centered so as to have zero

mean.

6-64

COX Process

pflag specifies how ties are to be treated. The available methods are:

0 None.

1 Breslow-Peto method.

2 Efron method.

3 Exact (exact marginal-likelihood) method.

4 Discrete (exact partial-likelihood method)

The usual methods are Breslow or Efron. Exact takes considerably longer,

and Discrete takes so long that it is not recommended. Ties are ignored

when pflag is set to zero, and the data is used as loaded.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and the second column taking a value of unity if censored,

else zero.

Cox residuals are estimated based on the Nelson-Aalen methodology for

evaluating the baseline cumulative hazard function. Residuals and survival

measures are estimated using the DURATION command.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

Example PARAM b1 b2;

FRML eq0 indx = b1*arrtemp + b2*plant;

1 FRML ex1 llfn = cox(fail, indx, 1);

ML (p,i) eq0 ex1;

2 FRML ex2 llfn = cox(fail˜censor, indx, 1);

ML (p,i) eq0 ex2;

hr = exp(coeff);

"Hazard Ratio " hr; call keyw;

6-65

COX Process

3 FETCH fail

llr0 = sumc(cox(fail,0,1))

"null model (llr0) " sumc(cox(failuret,0,1));

call waitkey(1);

In example 1, a Cox proportional hazard model with a Breslow methodology

for ties is estimated using maximum likelihood, with the index defined in eq0,

and the log likelihood in eq1.

Example 2 shows a similar estimation when some of the data is censored.

The hazard ratio is simply the exponent of the coefficients.

Example 3 shows how one would compute the null model - the likelihood for

the baseline hazard function when the index is zero. llr0, in conjunction with

the likelihood for the full model, can then be used to test the model using the

likelihood ratio test.

Source DURATION.SRC

See Also DURATION, ML, NLS

References Hosmer D.W, and S. Lemeshow (1999). Applied Survival Analysis, Wiley,

New York.

6-66

CREATE

Purpose To define the size of a new workspace.

Format CREATE (options) begin end ;

FNAME = filename ;

OPLIST = progopts ;

Input options (a,q,m,u) optional, the frequency of the data.

begin literal or numeric, the first period.

end literal or numeric, the last period.

filename literal, optional, the name of a GAUSSX save file.

prgopts literal, optional, options for program control.

Remarks CREATE must be the first GAUSSX statement in a command file.

There are four data types permitted - Annual, Quarterly, Monthly, and Un-

dated. Undated is the default, unless one uses the format shown in example

5 below, where gfile is the name of a GAUSSX save file created in a previous

session.

The range specified (eg 1971-1981) must be sufficiently large to accommo-

date all subsequent operations—that is, a SMPL statement should not go

outside these bounds.

The program control options are specified in progopts. The options available

are:

DISK/[RAM] Specifies the data processing mode. RAM is the default, and

implies that the GAUSSX workspace is stored in core, while DISK

implies that the Gaussx workspace is stored on the hard drive,

using the pathnames specified in the Project Options screen. The

former is faster, while the latter is necessary for huge data sets,

such as census data.

A CREATE statement can appear within a command file—this will initialize all

data sets. If the command file consists only of pure GAUSS code, then you do

not need to put a CREATE statement at the beginning. You should use output

on; to switch on that part of the code that you want written to the output file,

and wait; or waitkey(1); to pause during execution.

6-67

CREATE

Example 1. CREATE (A) 1971 1981;

2. CREATE (Q) 19711 19814;

3. CREATE (M) 197101 198112;

OPLIST = disk;

4. n1 = 1; n2 = 20;

CREATE (U) n1 n2;

5. CREATE (A);

FNAME = gfile;

In each of the first four examples, a GAUSSX workspace is created; the fre-

quency of the data being annual, quarterly, monthly and undated respectively.

In example 3, the GAUSSX workspace is stored on the hard drive, rather than

RAM. In example 5, gfile is the name of a file previously created by GAUSSX

using the SAVE command. The current GAUSSX workspace becomes iden-

tical to that at the time the file was saved, and the frequency is specified as

annual.

See Also END, OPEN, NFACTOR, SAVE

6-68

CROSSTAB

Purpose Creates contingency tables under the current sample.

Format CROSSTAB (options) varlist ;

CATNAME = categories ;

FMTLIST = fmtopts ;

GROUP = grouplist ;

MODE = statmode ;

TITLE = title ;

WEIGHT = wtname ;

Input options optional, print options.

varlist literal, required, list of two variable names.

categories literal, optional, a list of category names.

fmtopts literal, optional, format options.

grouplist literal, optional, group variable list.

statmode literal, optional, statistic mode list (NUM).

title string, optional, title.

wtname literal, optional, weighting variable.

Output STATS Tabular output.

Remarks The CROSSTAB statement creates a 2-way contingency table, based on the

two variables defined in vlist. The table is based on the current sample. A

total is automatically generated. See TABULATE for full details.

Print options include p —pause after each screen display, and s — print con-

tingency table statistics.

Example CROSSTAB (p,s) Activity Gender;

MODE = num fit min max row ;

CATNAME = Slight Moderate High Female Male ;

A cross-tabulation of Activity against Gender is produced under the current

sample.

See Also FREQ, TABULATE

6-69

DBDC Process

Purpose Creates a vector of log likelihoods for a double-bounded dichotomous choice

model.

Format z = DBDC (r, t, pred, sigma);

Input r literal, matrix of responses.

t literal, matrix of bids.

pred literal, utility or wtp vector.

sigma literal, standard deviation of residual.

Output z Vector of log likelihoods.

Remarks The DBDC coefficients are estimated using maximum likelihood; thus this

can be used for linear or non-linear models. Given the unobserved latent

willingness to pay (wtp) variable y∗, and the observed categorical response

variable r1 and r2 to a first and second question, then the DBDC model is

given by:

y∗ = f (x, β) + ε

r1 = 1 if y∗ > t0
r2 = 1 if r1 = 1 and y∗ > tu

or r1 = 0 and y∗ > tl

t = {t0 tu tl} is a three element price vector. r = {r1 r2} is an Nx2 response

matrix. The first vector, r1 is a response (yes/no) to whether the wtp exceeds

t0, while the second vector, r2 is a response to whether the wtp exceeds tu or

tl, the choice depending on whether the wtp was greater or less than t0. pred

is the predicted value (f (x, β̂) of the latent variable – the structural equation

for the latent variable can be linear or non-linear. ε is assumed distributed

N(0,σ2).

While t is usually fixed for all respondents, there are some circumstances

where this is not the case. In such a circumstance, t can be specified as an

nx2 matrix, where the first column is the price offered for the first question,

and the second column is the price offered for the second question.

6-70

DBDC Process

See the “General Notes for Non-Linear Models” under NLS, and the example

under ML. An example is given in test35.prg.

Example let t = 5 7 3;

FRML eq1 pred = b0 + b1*sex + b2*educ;

FRML eq2 llf = dbdc(r1˜r2,t,pred,sig);

PARAM b0 b1 b2 sig;

VALUE = 4 0 1 0;

ML (p,i) eq1 eq2;

TITLE = DBDC estimation ;

In this example, the structural form for the latent variable is shown in (eq1).

It can be linear or non-linear. The second equation specifies the likelihood

function for the DBDC process. The first question poses a bid value of 5,

while the second question poses a value of 7 if the first question was a yes,

else poses a value of 3. r1 and r2 are the categorical responses to each

question.

Source GXPROCS.SRC

See Also ML, NLS

References Hanemann, W. M., J. Loomis, and B.J. Kanninen (1991), “Statistical Efficiency

of Double-bounded Dichotomous Choice Contingent Valuation”, American

Journal of Agricultural Economics, Vol 73, pp.1255-63.

6-71

DENOISE

Purpose To remove the noise from a noisy signal or time series using wavelets.

Format DENOISE (options) dlist ;

MODE = mode ;

ORDER = order ;

PERIODS = periods ;

TITLE = title ;

VALUE = value ;

VLIST = vlist ;

WAVELET = filter ;

Input options optional, print options.

dlist literal, required, denoised series list.

mode literal, optional, threshold mode (MAD HARD UNIV).

order numeric, optional, wavelet level.

period numeric, optional, exclusion level (5).

title literal, optional, title.

value numeric, optional, threshold value.

vlist literal, required, variable list of original series.

wavelet literal, optional, wavelet filter (DAUB4).

Values in parentheses are the default values.

Remarks DENOISE filters noise from a noisy signal or time series. This is accom-

plished by first deriving the wavelet coefficients, and then thresholding those

coefficients below a certain value, since low value coefficients will be associ-

ated with noise. The cleaned signal is then reconstructed from the adjusted

wavelet coefficients.

The names of the noisy series are given in vlist; for each element, a denoised

series is estimated and stored in the corresponding name in dlist. These

vectors can then be used as if they had been created with a GENR statement.

Wavelets Wavelets have different smoothness, symmetry and support prop-

erties. The filter family and the number of moments is specified in

wavelet - the default is DAUB4. High moment filters with larger number

of coefficients results in better approximation.

6-72

DENOISE

[DAUB] Daubechies orthogonal wavelets— DAUB1 to DAUB10. The

Haar wavelet is equivalent to DAUB1.

SYM Symlets wavelets— SYM1 to SYM10. A symlet is more sym-

metric than the Daubechies wavelet.

COIF Coiflets wavelets— COIF1 to COIF5. Coiflets are less asym-

metric than the DAUB or SYM families, and thus have larger

support.

Level The order of the wavelet decomposition tree that is produced under

the multiple level decomposition is specified in order. This is commonly

called the level. Since each decomposition uses half the sample at that

level, the maximum number of levels, m, is determined by the sample

length that is exactly divisible by 2m. The default order is zero, which

results in the maximum level possible.

Threshold Denoising involves zeroing those wavelet coefficients that fall

beneath a specified threshold. The details of how the threshold is estab-

lished and utilized is determined by the MODE statement, which consists

of three components:

Estimate The threshold estimate can be specified directly by the user

in value, or can be derived using one of the following algo-

rithms:

[UNIV] Universal threshold, λ =
√

2 ln nσ. This is a global

threshold that is asymptotically optimal; it is also

smoother than MINIMAX.

MINIMAX The Minimax threshold is a global threshold that

is optimal in terms of minimax risk.

SURE The SURE threshold minimizes Stein’s unbiased

estimator of risk. This method should be imple-

mented with soft-thresholding. This is an adaptive

procedure, since the thresholds are determined at

each level.

Error The size of the noise in the signal is estimated from the stan-

dard deviation of the wavelet coefficients at the finest scale,

since this should contain mainly noise. Two estimates are

available:

[MAD] Mean absolute deviation from the median. This

tends to be more robust.

6-73

DENOISE

STD Standard deviation of wavelet coefficients.

Rule Two thresholding schemes are implemented:

[HARD] Coefficients set to zero if absolute value is less

than threshold.

SOFT Coefficients set to zero if absolute value is less

than threshold; remaining coefficients are shrunk

towards zero by the amount of the threshold.

The threshold is applied to all the wavelet coefficients, ex-

cluding the 5 (default) coarsest coefficients. The exclusion

level can be changed by specifying the number of coefficients

to exclude in periods.

There must be sufficient workspace for the entire series to be stored in core.

Missing values are not permitted.

Print options include p —pause after each screen display, and q —quiet - no

screen or printed output.

Examples of the use of DENOISE are given in test38.prg.

Example 1. DENOISE signew;

VLIST = sigold;

2. DENOISE (p) inventd;

VLIST = invent;

WAVELET = SYM8;

ORDER = 5;

MODE = mad sure soft;

In the first example, the original series sigold is denoised to form the new

series signew. The default settings imply the use of the Daubechies filter with

4 vanishing moments. The threshold is derived using the Universal estimator

with hard thresholding and a MAD estimator of the noise standard deviation.

The wavelet level used is maximal.

The second example shows how various options are specified - in this case,

the level is set to 5, the filer to Symlet 8, and the threshold is derived using

6-74

DENOISE

the SURE estimator with soft thresholding and a MAD estimator of the noise

standard deviation.

References Donoho, D. and I. Johnstone (1995), “Adapting to unknown smoothness via

Wavelet Shrinkage”, Journal American Statistical Assoc., Vol 90, pp 1200-

1224.

Vidakovic, B. (1999), Statistical Modeling by Wavelets, John Wiley, New York.

6-75

DGP

Purpose To create a data vector or matrix of a particular type of stochastic process.

Format y = DGP vstruct ;

Input vstruct DGPS structure, required.

Output y Data vector or matrix.

Remarks DGP provides a method for creating a data vector or matrix of a particular type

of process, either as a GAUSS or GAUSSX command. The only input argument

required is a data structure (vstruct), which is a structure of type DGPS. For

each type of data generating process, only those elements of vstruct that are

relevant need be specified.

A brief description of each process follows. In each case a structure of the

form struct DGPS vs; is assumed:

arch vs.index structural component

vs.arch ARCH parameter vector

vs.process string: arch

arch_t vs.index structural component

vs.arch ARCH parameter vector

vs.df degrees of freedom for t distribution

vs.process string: arch_t

arfima vs.ar autoregressive parameter vector

vs.ma moving average parameter vector

vs.diff fractional differencing parameter

vs.stderr residual standard error

vs.constant process constant

vs.process string: arfima

6-76

DGP

arima vs.ar autoregressive parameter vector

vs.ma moving average parameter vector

vs.diff integer differencing parameter

vs.stderr residual standard error

vs.constant process constant

vs.process string: arima

arma vs.ar autoregressive parameter vector

vs.ma moving average parameter vector

vs.stderr residual standard error

vs.constant process constant

vs.process string: arma

brownian vs.diff fractional parameter (Hurst)

vs.process string: brownian

garch vs.index structural component

vs.arch ARCH parameter vector

vs.garch GARCH parameter vector

vs.process string: garch

garch_t vs.index structural component

vs.arch ARCH parameter vector

vs.garch GARCH parameter vector

vs.df degrees of freedom for t distribution

vs.process string: garch_t

gaussian vs.variance variance

vs.process string: gaussian

linear vs.index structural component variable list

vs.variance residual variance

vs.vlist GAUSSX variable list

vs.process string: linear

6-77

DGP

linear_t vs.index structural component variable list

vs.variance residual variance

vs.df degrees of freedom for t distribution

vs.vlist GAUSSX variable list

vs.process string: linear_t

logit vs.index structural utility variable list

vs.prob % data in alternative #1 (binomial only)

vs.variance disturbance variance vector or matrix

vs.process string: logit

poisson vs.index structural component (ln λ)
vs.process string: poisson

probit vs.index structural utility variable list

vs.prob % data in alternative #1 (binomial only)

vs.variance disturbance variance matrix

vs.process string: probit

tobit vs.index structural component

vs.stderr residual standard error

vs.process string: tobit

wiener vs.process string: wiener

General

Notes

SYNTAX The structural component will normally consist of a variable name

(or names) - for example let vs.index = xb. However, if DGP is

being called as part of a GAUSS command, then the index can be

set as to a global variable - for example, vs.index = 10+20*x1.

BROWNIAN If diff, the Hurst parameter, is not specified, a standard Brow-

nian process is generated. Otherwise, a fractional Brownian pro-

cess is generated for 0 < diff < 1.

GARCH Arch and Garch processes automatically generate the conditional

variance as a GAUSS global stored under the name _ht.

6-78

DGP

LINEAR For the linear model, a single equation is implied if a single in-

dex variable is specified. For the normally distributed error, either

vs.stderr or vs.variance must be specified, while for the t dis-

tribution, vs.df is required.

A multivariate normal or t distribution is implied if there is more

than a single index variable - each variable represents the struc-

tural form for that equation. Both distributions require a residual

variance specified in vs.variance, while for the t distribution,

vs.df is required. This DGP returns an endogenous variable for

each equation, and so the GENR statement cannot be used in this

particular case. The results are returned in the variable list speci-

fied in vs.vlist.

QR For the logit and probit processes, binomial logit and probit is im-

plied if a single index variable is specified. vs.prob is the mean

probability of alternative 1. The logit and probit models assume the

disturbances are distributed with a Weibull or normal distribution

respectively, which requires scaling by specifying either vs.scale

(logit), vs.stderr or vs.variance. This DGP returns a categori-

cal vector with elements of 0 and 1.

A multinomial logit or probit distribution is implied if there is more

than a single index variable - each variable represents the struc-

tural utility associated with that alternative. For MNL, only the di-

agonal elements of vs.variance are used. This DGP returns a cat-

egorical vector with elements {1..k}, where k is the number of al-

ternatives.

A number of examples are given in test07.prg, test43.prg and test44.prg.

Example 1. struct DGPS gs;

gs.arch = .4 |.15 ;

gs.garch = .3;

let gs.index = xb;

gs.process = garch ;

GENR y = dgp(gs);

2. struct DGPS qrs;

6-79

DGP

GENR xb = 4 +5*x1-3*x2;

let qrs.index = xb;

qrs.prob = .4;

qrs.stderr = 1;

qrs.process = probit ;

GENR y = dgp(qrs);

3. struct DGPS qrls;

GENR x0 = 0*c;

GENR x1 = 2-4*z1;

GENR x2 = 3+5*ln(z3);

let qrls.index = x0 x1 x2;

qrls.scale = .25;

qrls.process = logit ;

GENR ycat = dgp(qrls);

4. let vmat[2,2] = .5 .2 .2 .8;

struct DGPS ls;

let ls.index = xb1 xb2;

ls.variance = vmat;

let ls.vlist = y1 y2;

ls.process = linear ;

call dgp(ls);

PRINT (p) y1 y2;

The first example demonstrates the creation of a vector y consisting of a

structural component (10 + 2 ∗ x) and a residual with a garch distribution,

with the parameters for the arch process specified in gs.arch (the first ele-

ment is the constant), and the parameters for the garch process specified in

gs.garch.

The second example shows how a binomial process is specified using DGP;

40% of the generated data will fall in category 1.

The third example demonstrates a multinomial logit DGP, with 3 alternatives.

Example 4 shows how a linear system is generated with correlated error

structure. The structural components (the RHS) are in xb1 and xb2, and the

6-80

DGP

endogenous variables - y1 and y2 - are created in the GAUSSX workspace,

and subsequently printed.

Source DGPX.SRC

See Also GENR, RND

6-81

DIVISIA

Purpose To compute an aggregate price index from several underlying price series.

Format DIVISIA pindx qindx ;

VLIST = vlist ;

Input pindx literal, required aggregate price index.

qindx literal, required aggregate quantity index.

vlist literal, required pairs of price and quantity vectors.

Remarks DIVISIA computes a Divisia aggregate price and quantity index from several

underlying price and quantity series. These are chain-linked Laspeyres In-

dices – the current price is used as the base for estimating the rate of growth

to the next period.

The index is derived by calculating the weighted sum of the rates of change of

component prices. The weights are calculated using the geometric average

of the expenditure shares. The index is normalized to unity at the beginning

of the sample. Once the price index pind has been determined, the quantity

index qind is derived by dividing total expenditure by the price index.

The elements in vlist consist of the price and quantity of each of the compo-

nent vectors; the price vector is given first, then the quantity vector. There

must be sufficient workspace for the entire matrix to be stored in core. Miss-

ing values are not permitted.

Example DIVISIA pindx qindx;

VLIST = pa qa pb qb pc qc;

A Divisia price index pindx and quantity index qindx is created from three

underlying goods a, b, and c; note that the price and quantity are expressed

in pairs, with the price first.

See Also PRIN, SAMA

References Jorgenson, D., and Z. Griliches (1971), “Divisia Index Numbers and Produc-

tivity Measurement”, Review of Income and Wealth, Vol. 17(2), pp. 227-229.

6-82

DROP

Purpose To remove the specified variables from the current GAUSSX workspace.

Format DROP vlist ;

Input vlist literal, required, variable list.

Remarks The DROP statement deletes the specified variables from the GAUSSX work-

space. The current SMPL remains in effect.

Example DROP x1 x2 x3;

The variables x1, x2 and x3 are deleted from the GAUSSX workspace.

See Also KEEP, RENAME, STORE

6-83

DUMMY

Purpose Creates seasonal dummy variables, or a set of dummy variables for a cate-

gorical variable.

Format DUMMY dname ;

VLIST = vname ;

Input dname literal, required, root name of dummies.

vname literal, optional, categorical variable.

Remarks The DUMMY command takes the categorical variable vname, and evaluates

the total range of dummies required, which are then created using dname as

a base. The dummies are numbered sequentially, starting at 1.

Seasonal dummy variables are automatically created when the VLIST op-

tion is not specified; the number of dummies is determined by the type of

workspace defined in the CREATE statement.

If more than 12 dummies are created from a categorical variable, and if these

dummies are subsequently used in a GENR or FRML statement, then these

variables must be initialized using the GAUSS clear statement.

Example 1. CREATE (q) 19741 19804;

DUMMY sd;

2. DUMMY ed;

VLIST = educ;

In the first example, 4 seasonal dummies (sd1, sd2...) are created. In the

second example, assume that educ is a categorical variable taking values

1,2,3 or 5, depending on the level of education, then this command will form

five dummy variables - ed1, ed2, ed3, ed4 and ed5. ed4 will be a vector

of zeros.

6-84

DURATION

Purpose Computes residuals, survival and hazard rates, based on the last duration

model estimation.

Format DURATION varlist ;

BOUND = level ;

MODE = oplist ;

VALUE = value ;

VLIST = vist ;

Input varlist literal, required, variable list.

level numeric, optional, percentage confidence level. (.95)

mode optional, duration measure.

value literal or numeric, probability value.

vlist literal, parameter list.

Remarks The DURATION command computes residuals, survival or hazard rates, where

the standard error and confidence bands are based on the last survival model

estimation. Duration models typically model the duration of an event, or the

time to failure. The following survival models are supported:

BETA_D — Beta distribution

COX — Cox model

EXPON — Exponential distribution

GAMMA_D — Gamma (distribution) process

GOMPERTZ — Gompertz process

GUMBEL — Gumbel (largest extreme value) process

INVGAUSS — Inverse Gaussian process

LOGISTIC — Logistic process

LOGLOG — Loglogistic process

LOGNORM — Lognormal process

NORMAL — Normal process

PARETO — Pareto process

PEARSON — Pearson process

SEV — Smallest extreme value process

WEIBULL — Weibull process

6-85

DURATION

varlist consists of up to four elements - the statistic, the standard error, and

the lower and upper confidence bands. The survival measure bands are

lower truncated at zero. If varlist consists of less than four elements, then

only these elements will be evaluated.

The duration measure is set in mode. Let f and F be the duration model pdf

and cdf respectively, and y the duration. The available survival measures are:

CUMFAIL The cumulative failure rate. CHF = F(y).
CUMHAZARD The cumulative hazard rate. CHZ = − ln(1 − F(y)).
HAZARD The hazard rate. HZ = f (y)/(1 − F(y)).
INVSURV The inverse survival rate. IS V = F−1(1 − p).
SURVIVAL The survival rate. S V = 1 − F(y). (Default).

BASECUMHZD The baseline cumulative survival rate (COX only).

BASEHZD The baseline hazard rate (COX only).

BASESURV The baseline survival rate (COX only).

The available residual measures are:

COXSNELL The Cox-Snell residual. − ln(1 − F(y)).
DEVIANCE The deviance residual.

MGALE The martingale residual. 1 − ln(1 − F(y))
RESID The estimation residual. y − indx or ln(y) − indx.

SCALEDSCH The scaled Schoenfeld residuals.

SCHOENFELD The Schoenfeld residuals.

SCORE The score residuals.

STDRES The standardized residual. RES ID/σ.

For RESID and STDRES, ln(y) is used for the exponential, loglog, lognormal

and Weibul distributions. To be meaningful, this measure usually requires

the index to be a location measure. For INVSURV, p is the probability, and is

specified in value.

The SCALEDSCH, SCHOENFELD and SCORE residuals require a parameter list

corresponding to each covariate; this is specified in vlist. As opposed to the

other residual measures, these return a residual for each covariate. Thus, if

6-86

DURATION

there are k covariates, then varlist should have k elements. For these residu-

als, the index must be linear.

No output is returned, but the duration measures are available for use in the

same way as a variable created through LOAD or GENR. Note that the PIT

(probability integral transformation) test can be used on the survival rate to

ascertain whether the hypothesized distribution can be rejected.

Examples are given in test57.prg.

Example FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

FRML eq1 llfn = lognorm(failuret,indx,scale);

FRML ec1 scale >= 0;

PARAM b0 b1 b2;

VALUE = 15 0 0;

PARAM scale;

VALUE = 1;

ML (p,i) eq0 eq1;

EQCON = ec1;

1. DURATION hz hzerr hzlb hzub;

MODE = hazard;

PRINT (p) failuret hz hzerr hzlb hzub;

2. DURATION isv isverr;

MODE = invsurv;

VALUE = .25;

PRINT (p) failuret isv isverr ;

3. DURATION sv;

MODE = survival;

TEST (p) sv;

METHOD = ppcc;

MODE = uniform;

4. DURATION rescn rescnerr;

6-87

DURATION

MODE = coxsnell;

GENR lfail = ln(failuret);

PRINT (p) lfail rescn rescnerr ;

5. FRML cq0 indx = b1*arrtemp + b2*plant;

FRML cq1 llfn = cox(failuret,indx,2);

ML (p,i) cq0 cq1;

DURATION schv1 shcv2;

MODE = schoenfeld;

VLIST = b1 b2;

A lognormal duration model is estimated using constrained ML - since the

scale parameter must be positive. In the first example, the hazard rate, its

standard error and lower and upper bound are derived for each observation,

and then printed.

In the second example, the inverse survival function for a probability of 0.25

is derived for each observation, along with the standard error.

The third example shows how the survival rate is evaluated, and then tested

for a uniform distribution using the TEST command. A rejection of a uniform

distribution implies that the specified distribution (in this case log normal) is

rejected.

In the fourth example, the Cox-Snell residual and its standard error are eval-

uated.

The fifth example shows how the Schoenfeld residuals are estimated follow-

ing a Cox regression. The parameters association with each of the covari-

ates, b1 and b2 are specified in vlist; thus, since there are two covariates,

there will be two items in varlist - schv1 and schv2, corresponding to ar-

rtemp and plant respectively.

Techical

Notes

The formulae do not show the effect of censoring.

See Also BETA D, COX, EXPON, GAMMA D, GUMBEL, INVGAUSS, LOGISTIC, LOGLOG,

LOGNORM, NORMAL, PARETO, SEV, SURVIVAL, WEIBULL

6-88

EGARCH Process

Purpose Creates a vector of log likelihoods for an EGARCH process.

Format z = EGARCH (resid, bvec, gvec, pvec, mvec);

Input resid literal, vector of residuals.

bvec literal, p + 1 vector of parameters for GARCH process.

gvec literal, q vector of parameters for lagged error process.

pvec literal, 3 element vector (θ0, γ0, ν)

mvec literal, 2 element vector of EGARCH–M parameters (m0, m1)

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of Nelson’s exponential GARCH

or EGARCH process are estimated using maximum likelihood; The general-

ized form for the EGARCH (p, q) process is:

yt = f (xt, β) + εt
εt ∼

√
htvt

ln ht = β0 +

p∑
i=1

βi ln ht−i +

q∑
j=1

γ j(θ0vt− j + γ0[|vt− j| − E|vt|])

The first equation describes the structural part of the model; thus this can

be used for linear or non-linear structural models. This structural component

should be first estimated using NLS to determine reasonable starting values.

The residuals from this process are the first argument (resid) to the EGARCH

command.

The second equation specifies the distribution of the residuals – vt is assumed

generalized error distributed (GED); this includes the normal as a special

case, along with many other distributions with both fatter and thinner tails.

When he tail parameter ν = 2, vt is standard normal; for ν < 2, vt has thicker

tails than the normal, while for ν > 2, vt has thinner tails than the normal.

6-89

EGARCH Process

The third equation specifies the structural form of the log of the conditional

variance ln h. The β are the weights for the lagged ln h terms; this is the

GARCH process in ln h. The second argument to the EGARCH command

(bvec) contain the p+1 elements of β, including the constant, β0.

The γ are the weights for the lagged disturbance v terms; the third argument

to the EGARCH command (gvec) are the q elements of γ. Three additional

parameters are specified in pvec; these are θ0, γ0, and the tail parameter

ν. It is typically the value of θ0 that permits the asymmetric volatility that is

captured in the EGARCH model. Note that for the q = 1 case, there is an

identification problem - this is solved by specifying γ1 as a constant equal to

unity.

The final argument, mvec, relates to the EGARCH–M process. The condi-

tional variance can be introduced into the structural equation by adjusting the

residual:

εt → εt − m0hm1
t

The two parameters, m0 and m1, are specified in mvec. A scalar zero is

acceptable for no conditional variance in the structural equation.

The residuals must be specified in a first FRML, and then the EGARCH pro-

cess is specified in a second FRML. The EGARCH model is very sensitive to

starting values, and can easily blow up. Use OLS and GARCH to get sensible

starting values.

The conditional variance, ht, is available, and stored in each iteration under

the global _HT, and can thus be retrieved using the FETCH command.

See the “General Notes for Non-Linear Models” under NLS, and the remarks

under ARCH. An example is given in test07.prg.

6-90

EGARCH Process

Example PARAM c0 c1;

VALUE = .5 .5;

FRML eq0 y = c0 - c1*x1 ;

NLS eq0;

PARAM b0 b1 the0 gam0;

VALUE = 1 .001 .001 .001;

LOWERB = -10 .001 -2 -2;

UPPERB = 10 .999 2 2;

CONST g1 nu m0 m1

VALUE = 1 2 0 1;

FRML eq1 e = y - c0 - c1*x1 ;

FRML eq2 llfn = egarch(e, b0|b1, g1, the0|gam0|nu, m0|m1);

ML (p,d,i) eq1 eq2;

METHOD = nr bhhh nr;

TITLE = egarch model ;

In this example, a linear EGARCH(1,1) model is estimated, with a disturbance

assumed distributed normal. The form of the conditional variance for this

specification is:

ln ht = β0 + βi1 ln ht−1 + θ0
εt−1
√

ht−1
+ γ0

[
|εt−1|
√

ht−1
−

√
2/π

]
Initial structural coefficients are derived using NLS. The residuals are speci-

fied in eq1, and the log likelihood is returned from eq2. Note the parameter

restrictions to ensure that the variance remains positive - b1 in particular

should be constrained. (Another way of doing this is to use the EQCON state-

ment.) nu has been set to 2, implying that the disturbance is normal, and

since it is a (1,1) process, g1 is set to unity.

Source GARCHX.SRC

See Also ARCH, GARCH, MGARCH, ML, NLS

References Engle, R.F., and V.K. Ng (1993), “Measuring and Testing the Impact of News

on Volatility”, Journal of Finance, Vol. 48(5), pp. 1749-1778.

6-91

EGARCH Process

Nelson, D.B. (1993), “Conditional Heteroskedasticity in Asset Returns: A New

Approach”, Econometrica, Vol. 59(2), 1993, pp. 347-370.

6-92

END

Purpose To delineate the end of a command file.

Format END ;

Remarks The END command must be the last statement in the command file. Any

commands following the END command are ignored. If an END statement is

not specified, the file will be read to the end-of-file.

Example END ;

See Also CREATE

6-93

EQCON

Purpose Parameter constraints for non-linear estimation.

Format GAUSSX COMMAND vlist ;

EQCON = cnstrntlist ;

Input vlist literal, required, variable list.

cnstrntlist literal, required, list of constraint equations.

Remarks It is often necessary to estimate the parameters of a non-linear equation sys-

tem subject to a set of parameter constraints. These constraints can be sim-

ple boundary conditions - for example requiring a parameter to be greater

than zero, or they can consist of relatively complex nonlinear relationships.

Each constraint is specified as a logical relationship within a type 3 FRML

command – see FRML for details. Within the estimating procedure, the con-

straints are activated by specifying the constraint equations within an EQCON

option. EQCON can be used in any non-linear equation system; thus this per-

mits the imposition of non-linear parameter constraints under FIML, GMM, ML

and NLS.

Example FRML eq1 y1 = a0 + a1*x1 + b1*x2;

FRML eq2 y2 = b0 + b1*x1 ;

FRML cq1 b1 >= 0;

FRML cq2 b0ˆ2 + 2*b1 <= 2.4;

PARAM a0 a1 b0 b1;

NLS (p,i) eq1 eq2;

EQCON = cq1 cq2;

In this example, a constrained NLS estimation is carried out over the system

of equations eq1 and eq2. The constraints are shown in two ways. First,

the coefficient of x2 in the first equation is to be the same as the coefficient

of x1 in the second. This occurs easily by specifying the same parameter

name - b1. Two other constraints are required - first that b1 is non-negative,

and second a relationship between b0 and b1. These are shown as logical

constraints in cq1 and cq2 respectively. The two constraints are imposed by

specifying the equation names in the EQCON option.

6-94

EQCON

See Also FIML, FRML, GMM, ML, NLS

6-95

EQSUB

Purpose Substitutes macro code for non-linear equations.

Format GAUSSX COMMAND vlist ;

EQSUB = macrolist;

Input vlist literal, required, variable list.

macrolist literal, required, list of macro equations.

Remarks Often non-linear equations have common terms, and rather than writing out

the full term for each equation, it is more convenient to use a macro to repre-

sent the common term. The macro is assigned in a FRML command, and the

substitution occurs in the EQSUB option. EQSUB can be used as a macro for

creating a matrix in a non-linear process, for imposing parameter restrictions,

or as a macro for common terms.

EQSUB can be used in any non-linear equation system, as well as in non-

linear FORCST and SOLVE. FORCST assumes that EQSUB is the same as in

the preceding estimation methodology, unless EQSUB is explicitly specified.

SOLVE requires an EQSUB if macros are used. EQSUB should not be used in

dynamic forecasts.

If an EQSUB occurs in an estimation procedure, GAUSSX will generate the

macros specified before estimating the residuals for the current iteration. In

the FRML definition, note that the macros are assigned (:=) a value; this is

necessary for GAUSSX to distinguish macros from ordinary non-linear equa-

tions.

Example FRML es1a qq := y-b0*x;

FRML es1b qq := yˆ2;

FRML es2 gama := sqrt((a1|a2|a3)’(a1|a2|a3));

PARAM a1 a2 a3 b0;

FRML eq1 qq = (a1 + a2*z + a3*zˆ2)/gama;

NLS (i,d) eq1;

EQSUB = es1a es2;

NLS (i,d) eq1;

EQSUB = es1b es2;

6-96

EQSUB

In this example, two NLS regressions occur. In each, it is required for the norm

of the underlying parameters in eq1 be unity. This is specified in equation

es2. In the first regression, the macro qq is replaced by the formula given

in equation es1a, and in the second by es1b. In each the macro gama is

replaced by the formula in equation es2.

See Also FIML, FORCST, GMM, ML, NLS, SOLVE

6-97

EVAL

Purpose Executes a string consisting of a set of GAUSS expressions.

Format EVAL (str);

Input str string, GAUSS expression.

Remarks The EVAL statement evaluates the string str as if the contents of str had been

typed in at the GAUSS prompt. This facility permits GAUSS to interact with

external applications by sending a set of GAUSS commands as a string.

EVAL requires GAUSS 4.0 or higher.

EVAL is pure GAUSS code, and is used independently of GAUSSX.

Example library gaussx ;

str = x = 14; xˆ2; ;

eval(str);

This sets x as a global variable with a value of 14, and displays 196.

Source GXPROC.SRC

Syntax xmat, namestr = expand(x,hier,std,vlist)

Input: x is an nxk data matrix, no constant

hier is a the hierarcy code: 0 - linear only 1 - linear and quad 2 - linear and

cross 3 - linear and cross and quad

std is the std method: 0 - none 1 - std (0 mean, unit variance) 2 - range -1 to

+1

vlist is an kx1 strarray of names, or 0

Output: xmat - standardized matrix namestr - column names

6-98

EXPAND

Purpose Expands a matrix in quadrtic and cross terms.

Format { xmat, namestr } = EXPAND (x, hier, std, vlist);

Input x NxK matrix of data.

hier scalar, hierarchy code.

std scalar, standardization method.

vlist Kx1 string array of names, or zero.

Output xmat expanded standardized matrix.

namestr column names of the expanded matrix.

Remarks This procedure expands a matrix up to order two.

Four hierarchy methods are available; the method is selected by specifying

hier:

0 Linear only.

1 Linear and quadratic.

2 Linear and cross.

3 Linear and quadratic and cross.

Three standardization methods are available; the method is selected by spec-

ifying std:

0 No standardization.

1 Each column standardized to zero mean and unit variance.

2 Each column standardized to a range of -1 to +1.

EXPAND is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

x = rndn(1000,3);

{xmat, namestr} = EXPAND(x,1,1,0);

This computes xmat consisting of 3 linear terms and 3 quadratic terms, each

column being standardized to zero mean and unit variance. namestr will be

a string array of length 6, with elements of the form X1 ∗ X1.

6-99

EXPAND

Source STEPWISE.SRC

See Also XPAND

6-100

EXPON Process

Purpose Creates a vector of log likelihoods for an exponential process.

Format z = EXPON (y, indx);

Input y literal, dependent variable - duration.

indx literal, scale index

Output z Vector of log likelihoods.

Remarks The exponential model can be used to estimate duration data. The expected

value of scalei is parameterized as:

E(scalei) = exp(indxi).

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index are estimated using maximum likelihood; thus

this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-101

EXPON Process

Example PARAM b0 b1 b2;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = expon(fail,indx);

ML (p,i) eq0 eq1;

2 FRML eq2 llfn = expon(fail˜censor,indx);

ML (p,i) eq0 eq2;

In example 1, a linear Exponential model is estimated using maximum likeli-

hood, with the index defined in eq0, and the log likelihood in eq1. Example 2

shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-102

EXSMOOTH

Purpose Identify, estimate and forecast the exponential smoothing model.

Format EXSMOOTH (options) vname ;

DISPLAY = screen ;

MAXIT = maxit ;

METHOD = meth ;

MODE = mode ;

NDIFF = ndiff ;

NSDIFF = nsdiff ;

OPLIST = progopts ;

PERIODS = periods ;

RANGE = range ;

TITLE = title ;

TOL = tolerance ;

VLIST = fcstname ;

Input options optional, print options.

vname literal, required, variable name.

screen literal, optional, screen mode (GRAPH).

maxit numeric, optional, maximum number of iterations (20).

meth literal, optional, algorithm list (GAUSS GAUSS GAUSS).

mode literal, optional, smoothing mode (SINGLE).

ndiff numeric, optional, degree of differencing (0).

nsdiff numeric, optional, degree of seasonal differencing (0).

progopts literal, optional, options for program control.

periods numeric, optional, number of lags for correlogram (15).

range numeric, optional, pairs of ranges for forecasting.

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

fcstname literal, optional, forecast variable name.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

LLF Log likelihood.

6-103

EXSMOOTH

VCOV Parameter covariance matrix.

PSTAR Vector of smoothing constants.

Remarks The EXSMOOTH command undertakes all three parts of the exponential smooth-

ing process - identification, estimation and forecasting. The process is given

by:

xt+1 = f (xt, x̂t, T̂t, F̂t, θ)
where:

xt = actual value of x at period t.
x̂t = forecast value of x for period t.
T̂t = forecast value of trend for period t.
F̂t = forecast value of seasonality for period t.
θ = coefficient vector.

The exponential smoothing algorithm is specified in mode. The available

algorithms are:

SINGLE Single exponential smoothing. No trend or seasonality. A sin-

gle coefficient (α) is estimated. (default).

DOUBLE Brown’s double exponential smoothing; this involves single ex-

ponential smoothing carried out twice. No trend or seasonal-

ity. A single coefficient (α) is estimated.

HW Holt-Winters exponential smoothing. This uses trend, but no

seasonality, and two coefficients are estimated (α, β).

HWADD Holt-Winters exponential smoothing with additive seasonal.

This uses trend and seasonality, and three coefficients are

estimated (α, β, γ).

HWMULT Holt-Winters exponential smoothing with multiplicative sea-

sonal. This uses trend and seasonality, and three coefficients

are estimated (α, β, γ).

The exponential smoothing process requires that vname must be in core, and

uses the current sample, which must be contiguous.

6-104

EXSMOOTH

Print options include c —print correlogram of the estimated residuals, d —

print descriptive statistics, i —print parameters at each iteration, p —pause

after each screen display, and q —quiet - no screen or printed output. Addi-

tional information is available through the on-line help (Alt-H).

The program control options are specified in progopts. The options available

are:

IDENTIFY/[NOIDENT] Specifies whether the identification process is to be

undertaken.

[ESTIMATE]/NOEST Specifies whether the model is to be estimated.

[FORECAST]/NOFORCST Specifies whether the forecast process is to be un-

dertaken.

[FIT]/RESID Specifies the type of forecast mode.

STATIC/[DYNAMIC] Specifies whether the actual or predicted values of vname

are used in the forecast process.

PARAM/[NOPARAM] Specifies whether the parameter starting values are to

be given in a PARAM or a CONST statement, or if they are to be

evaluated by the program.

[PLOT]/NOPLOT Specifies whether the correlogram and partial autocorrelo-

gram are to be plotted.

Identification The identification process is required to determine the degree of differenc-

ing necessary to generate a series that is stationary. This works in exactly

the same way as for ARIMA. Normally, differencing is not undertaken in an

exponential smoothing context.

Estimation The estimation process can be used to optimally choose the smoothing con-

stants based on the minimum sum of squared one-step forecast errors. This

recursive estimation is handled automatically by GAUSSX . The estimation

process requires the user to specify the type of algorithm to be used in mode.

GAUSSX will automatically estimate starting values of the parameters of the

model. These parameters are called ALPHA for the main smoothing param-

eter, BETA for the trend parameters and GAMMA for the seasonal parameter.

If the option OPLIST = PARAM is specified, starting values for the coefficients

must be given by the user in a PARAM or a CONST statement. Thus, if some

6-105

EXSMOOTH

of the parameters are to be restricted during an EXSMOOTH estimation, they

should be specified previously in a CONST statement.

The estimation use the NLS routines, and all the non-linear options are avail-

able. Initial conditions follow Chatfield (1978), and residuals are set to zero

for these initial observations. GAUSSX uses the current sample, and auto-

matically drops the first ndi f f + f req ∗ nsdi f f observations if differencing is

specified. The frequency used for the seasonal factor is determined by the

type of data set specified in the CREATE command. Parameter values at the

end of the estimation are stored both under their individual names, as well

as in a global vector called COEFF. In addition, the entire vector of smoothing

constants is stored in PSTAR. A correlogram of the residuals is produced if

the c option is specified in options.

Forecasting A separate forecast is undertaken for each pair of sample dates specified in

range, or for the last 15 observations if RANGE is not specified. Under the

default (DYNAMIC), the forecasts are based on the actual values of vname up

to the first element in the pair, and forecast values up to the last element of the

pair. Forecasts based on the actual residuals derived during the estimation

process can be achieved by using the STATIC option. The vector that is

forecast is the fitted value of vname, unless OPLIST = RESID is specified, in

which case the forecast is the vector of residuals. The forecast for the last

pair of sample points specified in range is stored as a GAUSSX vector under

the name given in fcstname.

Forecast values for an EXSMOOTH process can also be obtained using the

FORCST command. Both the MODE and the RANGE options must be speci-

fied. See the “General Notes for Non-Linear Models” under NLS. Examples

of exponential smoothing estimation are given in test16.prg.

Example 1. SMPL 1956 1974;

EXSMOOTH (p,d) y;

OPLIST = noforcst;

2. SMPL 19681 19854;

EXSMOOTH (p) q;

MODE = hwadd;

6-106

EXSMOOTH

RANGE = 19841 19874;

VLIST = qfit;

3. SMPL 1962 1988;

PARAM alpha beta

VALUE = 0.6 0.3;

CONST beta;

EXSMOOTH (p) gnp;

MODE = hw;

OPLIST = param identify static resid;

MAXIT = 40;

Example 1 shows how the smoothing constant for single exponential smooth-

ing is undertaken on the vector y. Summary description of y is undertaken

using the (d) option, and the estimation is carried out, but no forecast.

Example 2 shows the more usual case. Here, quarterly data is to be dynam-

ically forecasted starting in 1984.1, based on smoothing constants optimally

chosen using the Holt-Winters additive seasonal algorithm. The forecast is

stored as the variable qfit, and can be used in subsequent GAUSSX opera-

tions.

A restricted model is estimated in Example 3: β is restricted to 0.3 through

the previous CONST statement; while α takes a starting values of 0.6. The

identification process is undertaken, and after estimation the static residuals

for the last 15 observations is displayed, but not saved.

See Also ARIMA, CONST, FORCST, NLS, PARAM, TITLE

References Chatfield, C. (1978), “The Holt-Winters forecasting procedure”, Applied Statis-

tics, Vol. 27, pp. 264-279.

Newbold, P., and T. Bos (1990), Introductory Business Forecasting, South-

Western Publishing Co. Cincinnati, Ohio.

6-107

FETCH

Purpose To fetch the named vectors and store them as global variables.

Format FETCH varlist ;

VLIST = matname ;

Input varlist literal, required, variable list.

matname literal, optional, matrix name.

Remarks The FETCH command instructs GAUSSX to access the named vectors, and

store them as global variables. The current SMPL statement remains in effect.

This command allows the user to use the named series in subsequent GAUSS

commands. The VLIST option allows the user to place the GAUSSX variables

directly into the matrix matname. See Appendix C for details on how GAUSSX

treats variables in the GAUSSX workspace.

Example 1. library pgraph;

SMPL 1 20 ;

FETCH x;

BAR(0,x);

2. FETCH z1 z2 z3;

VLIST = z;

FETCH y yhat;

e = y - yhat;

ehhe = e’z*inv(z’z)*z’e;

@@ ehhe ehhe;

The first example shows how other types of graphs, that are available in

GAUSS can be used in GAUSSX – in this case a bar graph. The second

example shows how one could use the matrix capability of GAUSS to derive

estimators which are functions of the data, again from within a GAUSSX com-

mand file.

See Also GAUSS, STORE

6-108

FEVAL

Purpose Evaluates a type II nonlinear FRML statement, and stores the result in the

GAUSSX workspace.

Format FEVAL varlist ;

EQNS = eqnlist ;

Input varlist literal, required, variable list.

eqnlist literal, required, equation list.

Remarks The FEVAL statement evaluates each equation in eqnlist as if the statement

had been rewritten in a GENR statement, and stores the result in the respec-

tive member of varlist in the GAUSSX workspace. The elements of varlist do

not have to be the same as the elements on the LHS of each equation.

Example FRML eq1 y1 = a0 + a1*x1 + a2*ln(x2);

FRML eq2 y2 = b0 + b1*x1 + b2*x2;

FEVAL yh1 yh2;

EQNS = eq1 eq2;

GENR x1 = x1ˆ2;

FEVAL y1;

EQNS = eq1;

In this example, each equation (eq1 and eq2) is evaluated, and the result

stored in yh1 and yh2 respectively. After the GENR statement, eq1 is reevalu-

ated, and the result stored in y1.

See Also GENR

6-109

FIGARCH Process

Purpose Creates a vector of log likelihoods for a fractionally integrated GARCH pro-

cess.

Format z = FIGARCH (resid, avec, bvec, gvec);

z = FIGARCH T (resid, avec, bvec, gvec, dvec);

Format

Input resid literal, vector of residuals.

avec literal, vector of parameters for ARCH process.

bvec literal, vector of parameters for GARCH process.

gvec literal, dimension parameter.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the FIGARCH process are

estimated using maximum likelihood. The FIGARCH model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 + Θ(L)ε2t +
∑
j=1

β jht− j

where:

A(L) = α1L + α2L2 + ... + αqLq

B(L) = β1L + β2L2 + ... + βpLp

Φ(L) = [1 − A(L) − B(L)](1 − L)−1

Θ(L) = 1 − B(L) − Φ(L)(1 − L)d

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

6-110

FIGARCH Process

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The β are the weights for the lagged

h terms; this is the GARCH process. Both the α and the β terms enter as

weights for the lagged squared residual.

The first element of avec, which is required, gives the constant. gvec is the

dimension parameter (d) for the FIGARCH process; normally this parameter

should lie between zero and unity. A value close to zero implies a long mem-

ory process, while a value close to unity implies a very short memory.

Note the stationarity conditions described under GARCH. In addition, the el-

ements of Θ should be positive to ensure non-negative conditional variance.

This can usually be ensured by requiring that d + α1 > 1

See the “General Notes for GARCH” under GARCH, and the “General Notes

for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM c0 c1 c2;

VALUE = coeff;

PARAM a0 a1 a2 b1 d1;

VALUE = sigsq .1 .1 0 .95;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 a1 + d >= 1;

FRML cs6 d >= 0;

FRML cs7 d <= 1;

FRML eq1 resid = y - (c0 + c1*x1 + c2*x2);

FRML eq2 lf = figarch(resid,a0|a1|a2,b1,d1);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5 cs6 cs7;

In this example, a linear FIGARCH model is estimated using constrained max-

imum likelihood, with OLS starting values. The residuals are specified in eq1,

6-111

FIGARCH Process

and the log likelihood is returned from eq2. Note the parameter restrictions

to ensure that the variance remains positive.

Source GARCHX.SRC

See Also GARCH, EQCON, FRML, ML, NLS

References Baillie, R.T, T. Bollerslev, and H.O. Mikkelsen. (1996), “Fractionally integrated

generalized autoregressive conditional heteroskedasticity”, Journal of Econo-

metrics, Vol 74, pp 3-30.

6-112

FILTER

Purpose Filters data using a variety of filters.

Format y = FILTER (ftype, x, p1, p2, y0);

Input ftype string, the name of the filter.

x NxK matrix, data to be filtered.

p1 PxK matrix or scalar, first parameter for the specified filter.

p2 QxK matrix or scalar, second parameter for the specified filter.

y0 PxK matrix or scalar, initial values.

Output y NxK matrix of filtered data.

Remarks The available filters are:

ARMA y = filter(“ arma”, x, phi, theta, y0);

(1 − φ(L))y = (1 + θ(L))x

This is an autoregressive moving average filter. phi is the AR com-

ponent, and theta is the MA component. The first elements of y

are pre-specified with y0, which should have the same order as

phi.

DEDIFF y = filter(“dediff”, x ,d, 0, 0);

This is an inverse difference filter, where d is the integer degree

of differencing.

DETREND y = filter(“detrend”, x, 0, 0, 0);

This is a detrending filter - y has zero mean, and is detrended.

DIFF y = filter(“diff”, x, d, 0, y0);

y = (1 − L)d x

This is a difference filter, where d is the degree of differencing -

both integer and fractional differencing are supported. The first

6-113

FILTER

elements of y are pre-specified with y0, which should be of order

ceil(d).

hp y = filter(“detrend”, x, w, 0, 0);

This is the Hodrick-Prescott filter, where w is a parameter that con-

trols the trade off between fit and smoothness. w = 0 implies that

y has the same trend component as the original series. Suggested

values for w are 100 for annual data, 1600 for quarterly, and 14400

for monthly data.

LINEAR y = filter(“linear”, x, a, b, y0);

yn = b1 ∗ xn + b2 ∗ xn−1 + · · · + bnb+1 ∗ xn−nb

−a1 ∗ yn−1 − · · · − ana ∗ yn−na

This is a one dimensional recursive digital filter. The data in vector

x is filtered by vectors a and b to create y. The linear filter is an

IIR (infinite impulse response) or recursive filter. Initial conditions

are specified in y0.

STANDARD y = filter(“standard”, x, 0, 0, 0);

This filter creates the standardized series y with zero mean and

unit variance.

FILTER is pure GAUSS code, and is used independently of GAUSSX.

Example library gaussx;

1. let a = .5 .3 .1;

let b = .2 ;

let y0 = 0 0 0;

y = FILTER(linear, x, a, b, y0);

2. d = 1;

xd = FILTER(diff’, x, d, 0, x[1]);

x2 = FILTER(dediff, xd, d, 0, 0);

6-114

FILTER

Example 1 shows a linear filter - in effect an AR(3) process, but with the cur-

rent and one period lag value of x being part of the process. Example 2

shows a first order differencing, followed by its inverse.

Source FILTERX.SRC

6-115

FIML

Purpose Estimates the coefficients of a non-linear equation or system of equations

using full information maximum likelihood.

Format FIML (options) elist ;

BOUND = level ;

EQCON = cnstrnt ;

ENDOG = endlist ;

EQSUB = macrolist ;

IDENT = ilist ;

JACOB = Jacobian ;

MAXIT = maxit ;

MAXSQZ = maxsqz ;

METHOD = meth ;

POSDEF = pdname ;

SIMANN = simann ;

STEP = step ;

TITLE = title ;

TOL = tolerance ;

TRUST = trust ;

WEIGHT = wtname ;

Input options optional, print options.

elist literal, required, equation list.

level numeric, optional, percentage confidence level.

cnstrnt literal, optional, list of constraint equations.

endlist literal, required, endogenous variable.

macrolist literal, optional, macro equation list.

ilist literal, optional, identity list.

Jacobian literal, optional, Jacobian.

maxit numeric, optional, maximum number of iterations (20).

maxsqz numeric, optional, maximum number of squeezes (10).

meth literal, optional, algorithm list (GAUSS GAUSS BHHH).

pdname literal, optional, positive definite algorithm (NG).

simann numeric, optional, SA options (5 .85 100 20).

step literal, optional, step type (LS).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

6-116

FIML

trust numeric, optional, TR options (.1 1 .001 3).

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

LGCOEFF Vector of Lagrangian coefficients.

GRADVEC Gradient vector.

LLF Log likelihood.

VCOV Parameter covariance matrix.

COVU Residual Covariance matrix.

Remarks The FIML command estimates the coefficients of a single equation or a sys-

tem of equations by iteratively choosing those parameters which maximize

the likelihood function. FIML differs from NLS only in that it takes into ac-

count the Jacobian, and thus allows the estimation of equations in which true

simultaneity exists. Although GAUSSX will evaluate the Jacobian if it is not

specified, given the endogenous variables, this increases the computation

time considerably.

See the “General Notes for Non-Linear Models” under NLS, and the examples

given in test02.prg and test03.prg.

Example PARAM a0 a1 a2 b0 b1 b2 b3;

FRML eq1 y1 = a0 + a1*x1 + a2*y2;

FRML eq2 y2 = b0 + b1*x3 + b2*x4 + b3*y1;

FRML eq3 y2 = a0 + b1*x3 + b2*x4 + b3*y1ˆ2;

1. FIML eq1 eq2;

ENDOG = y1 y2;

MAXIT = 10;

JACOB = 1 -a2

-b3 1;

2. FIML (p,i) eq1 eq3;

6-117

FIML

ENDOG = y1 y2;

TOL = .0001;

METHOD = nr gauss bhhh;

JACOB = 1 -a2

-2*b3*y1 1;

In the first example, a linear system of equations is estimated by FIML; note

how the Jacobian is written—GAUSSX takes care of evaluating this, and notes

that it does not change across cases. In the second example, the Jacobian

is a function of the variables, and has to be evaluated for each observation.

The initial method is changed from GAUSS (the default) to NR, and parameter

values are printed at each iteration (i), with a pause (p) after each screen

display.

See Also FRML, GMM, ML, NLS, TITLE, WEIGHT

References Amemiya, T. (1985), Advanced Econometrics Harvard University Press, Cam-

bridge.

6-118

FMNP Process

Purpose Creates a vector of log likelihoods for a multinomial probit process, without

parameterization of the covariance matrix.

Format z = FMNP (ycat, vmat);

Input ycat literal, Nx1 vector of alternatives chosen (not ranked), or NxK ma-

trix or rankings of alternatives chosen. (ranked)

vmat literal, matrix of utility values for each alternative.

cmnpup global scalar, update vcmat every cmnpup iterations

(Default = 2),

cmnpck global scalar, carry out check for improving llf after vcmak:

0 - false, 1 - true. (Default = 1).

FMNP uses MNP to evaluate the multivariate normal integral, and thus the

following globals are used - see MNP for documentation.

mnpsc global scalar, scaling option.

mnpint global scalar, integration algorithm.

Output z Vector of log likelihoods.

Remarks The structural coefficients and the coefficients of the FMNP process are esti-

mated using maximum likelihood.

ycat is an Nx1 vector in which is specified the alternative chosen for each

observation. If ranked data is available, ycat is an NxK vector in which is

specified the ranking for each alternative for each observation. Each utility is

specified in a FRML, and since utility differences are evaluated, the first utility

is set to zero as a reference; vmat is the matrix formed by the concatenation

of these utilities. The utilities can be functions of individual characteristics,

(multinomial probit), choice characteristics (conditional probit), or a combina-

tion, and can be linear or non-linear.

The standard MNP procedure evaluates the probability of selecting the al-

ternative specified in ycat. For each observation, the mean value (utility)

associated with each alternative is stored in vmat. The Random Utility Model

6-119

FMNP Process

assumes that the utilities are distributed with the specified mean, and an addi-

tive disturbance that is correlated across alternatives. In the MNP formulation,

the distribution of these errors is multivariately normal, with a covariance ma-

trix Σ. For a K alternative model, there are K∗ = .5K(K − 1) possible two

choice combinations. Under FMNP, this covariance matrix is simulated based

on the current structural parameter values and knowledge of the alternative

actually chosen, or the ranking of alternatives in the RMNP case. Integration

of the multivariate density function is undertaken by QDFN. Exact estimation

is the default, and is acceptably rapid for low K, or for the factor analytic case.

For large K, simulation methods using the GHK algorithm are utilized. The

QDFN globals must be set before a MNP estimation.

Since the utilities are estimated as differences, a reference is needed; usually

this is achieved by setting the first utility equal to zero. Similarly, the scaling

of the parameters is determined by the covariance matrix – in the FMNP esti-

mation, the norm of the K∗ covariance elements is set to unity.

See the “General Notes for Non-Linear Models” under NLS, and the discus-

sion of multinomial probit MNP. An example is given in test33.prg.

Example FRML zp1 v1 = 0;

FRML zp2 v2 = g0 + g1*x1 + g2*x2;

FRML zp3 v3 = h0 + h1*x1 + g2*x3;

FRML zpmnp lllf = fmnp(ycat,v1˜v2˜v3);

PARAM g0 h0 g1 g2 h1;

ML (p,i) zp1 zp2 zp3 zpmnp;

METHOD = nr nr nr;

TITLE = Non-linear FMNP ;

In this example, a linear mixed FMNP model is estimated. x1 is a individual

characteristic, while x2 and x3 are choice based characteristics. ycat should

take values of 1, 2, or 3, depending on which alternative was selected for

each observation.

Source FMNP.SRC

6-120

FMNP Process

See Also ML, MNP, NLS

References Breslaw, J.A. (2002). “Multinomial Probit Estimation without Nuisance Pa-

rameters”, Econometrics Journal, Vol. 5(2), pp. 417-434.

6-121

FMTLIST

Purpose User control over formatted input for packed ASCII OPEN and formatted output

for COVA, PRINT and ASCII SAVE.

Format GAUSSX COMMAND vlist ;

FMTLIST = fmtopts ;

Input vlist literal, required, variable list.

fmtopts literal, required, options for format control.

Remarks The format control options are specified in fmtopts. The options available are:

FORMAT = fmtstring where fmtstring is either a single string as used in

the GAUSS format command, and applies to all the variables

being printed, or is the name of a kx1 vector containing the

desired format string for each of the k variables in vlist. Ac-

ceptable strings are RD, RE, RO, RZ, LD, LE, LO, LZ.

RECORD = recordwidth where recordwidth is a scalar giving the length

of the packed ASCII record, excluding the final carriage return

and line feed.

POSITION = position where position is either a scalar giving the posi-

tion for the first variable, or is the name of a kx1 vector con-

taining the position for each of the k variables in vlist.

WIDTH = fieldwidth where fieldwidth is either a scalar giving the width

for each variable, or is the name of a kx1 vector

containing the desired widths for each of the k variables in

vlist.

PRCN = precision where precision is either a scalar giving the precision

for each variable, or is the name of a kx1 vector containing the

desired precision for each of the k variables in vlist.

An option that is not specified is set to the default value. If the width is not

sufficiently large for the number to be displayed, it will be ignored for that

observation. Note also that FMTLIST is a subcommand, and applies only to

the preceding main command.

6-122

FMTLIST

Example 1. PRINT x1 x2 x3;

FMTLIST = WIDTH=10 PRCN=4;

2. let fvec = RD RD LE LO;

let wvec = 10 10 12 8;

COVA (p,d) x1 x2 x3 x4;

FMTLIST = FORMAT=fvec WIDTH=wvec PRCN=0;

3. let pvec = 4 12 23;

let wvec = 2 8 3;

let dvec = 0 2 0;

OPEN x1 x2 x3;

FNAME = data.asc;

FMTLIST = RECORD=36 POSITION=pvec WIDTH=wvec

PRCN=dvec;

In the first example, a width of 10 characters is reserved for each variable,

with 4 digits displayed after the decimal point.

In the second example, each of the variables is displayed with formats spec-

ified in fvec, field widths specified in wvec, and with the decimal point sup-

pressed.

In the third example, three fields are read from a packed ASCII file with record

length of 36 (excluding final carriage return and line feed). x1 occurs in

columns 4-5, x2 in 12-19 and x3 in 23-25. No adjustment for decimal points

is made for x1 or x3. For x2, a decimal point is inserted two places in from

the right edge of the field. x1 and x3 may have decimal points in the data, but

x2 must not have any, nor may any element of x2 be missing.

See Also COVA, OPEN, PRINT, SAVE

6-123

FORCST

Purpose Forecasts or compute variables based on the last estimation, or on a user

specified procedure.

Format FORCST varlist ;

BOUND = level ;

ENDOG = endoglist ;

EQNS = eqnlist ;

EQSUB = macrolist ;

METHOD = meth ;

MODE = mode ;

RANGE = rangelist ;

USERPROC = &userprc ;

VALUE = values ;

VLIST = vlist ;

Input varlist literal, required, variable list.

level numeric, optional, percentage confidence level. (.95)

endoglist literal, optional, endogenous variable list.

eqnlist literal, optional, equation list.

macrolist literal, optional, macro equation list.

meth literal, optional, estimation method.

mode literal, optional, type of forecast (FIT STATIC).

rangelist numeric, optional, pairs of ranges for forecasting.

&userprc literal, optional, pointer to user procedure.

values literal or numeric, optional, coefficient values.

vlist literal, optional, input variable list.

Remarks The FORCST computes a forecast for the dependent variable(s) associated

with the most current estimation. This can be for a single equation, or for

a system of equations. In the default, the forecast is static, but if there are

lagged dependent variables, a dynamic forecast can be specified for most

estimation methods. FORCST is not designed to estimate forecast values

when any of the RHS variables is a current endogenous variable; for this

case, use the SOLVE command. Forecasts can be based on the historical

value of the RHS, or on future expected values of the RHS variables. The

FORCST command can also be used to create variables that are created in a

6-124

FORCST

user specified procedure, as well as predicted value and standard errors for

variables that are non-linear functions of estimated parameters

The type of forecast can be set by the MODE options. The available estimation

modes are:

STATIC Lagged dependent variables take their historical values. This is

the default except for ARIMA and EXSMOOTH where the both mode

and rangelist must be specified.

DYNAMIC Lagged dependent variables take their simulated values.

NAIVE Naive step ahead forecast (ARFIMA, ARIMA, ARMA only).

BLP Best linear predictor step ahead forecast (ARFIMA, ARIMA, ARMA

only).

The type of forecast output is also determined by the MODE option. The

available output modes are:

[FIT] The fitted value of the dependent variable(s).

RESID The residuals of the estimation.

RESIDSQ The square of the residuals of the estimation.

STDERR The standard error of the forecast(OLS, ARFIMA, ARIMA, ARMA

only).

LLF The log likelihood (ML only).

CONDVAR The conditional variance (GARCH models only)

BOUNDS Prediction limits (OLS only).

COOK Cook’s D (OLS only).

DFFITS Scaled difference in fitted value (OLS only).

DFBETAS Scaled difference in coefficients (OLS only).

HAT The Hat vector (xi(X′X)−1x′i) (OLS only).

STDRES Standardized residuals (OLS only).

STUDENT Studentized residuals (OLS only).

MILLS Mill’s ratio (QR only).

PROB Probability forecast for each alternative (MNL, MNP, PROBIT and

LOGIT only).

CAT Category forecast (MNL, MNP, PROBIT and LOGIT only).

6-125

FORCST

No output is returned, but the forecast variables are available for use in the

same way as a variable created through LOAD or GENR. In most cases, none

of the suboptions need to be specified; the estimation methodology and the

list of equations are taken from the previous estimation. Note that the number

of elements in varlist must equal the number of equations in the last estima-

tion. For MODE = DFBETAS the number of elements in varlist must equal the

number of coefficients in the last estimation.

The various options provides a degree of flexibility in using FORCST. These

are required if a previous estimation has not been carried out, or if one wishes

to evaluate a forecast in a different context than the previous estimation. Ex-

amples are given in test02.prg, test07.prg, test16.prg, and test19.prg.

Example 1. FORCST yfit;

2. FORCST y1fit y2fit;

3. OLS y c x1 x2 y(-1);

FORCST residft;

MODE = resid dynamic;

4. OLS y c x1 x2;

FORCST lb ub;

MODE = bounds;

BOUND = .9;

5. QR eq1;

FORCST yfit;

METHOD = OLS;

EQNS = eq2;

6. FORCST xfit;

METHOD = EXSMOOTH HW;

MODE = DYNAMIC;

RANGE = 1980 1992;

VALUE = .5 .3;

6-126

FORCST

7. aval = rndu(3,5)-0.5; ? random coefficients

proc sigmoid(x);

retp(1./(1+exp(-x*aval)));

endp;

LIST avlist av1 av2 av3 av4 av5;

FORCST avlist;

VLIST = c x1 x2;

USERPROC = &sigmoid;

8. PARAM b0 b1 b2 sigma;

VALUE = 1 1 1 .5;

FRML eq1 qhat = b0*(Kˆb1).*(Lˆb2);

NLS (p) eq1;

FRML eq2 q2 = exp(ln(b0) + (b1+b2)*ln(Z));

FORCST q2;

EQNS = eq2;

FORCST q2se;

EQNS = eq2;

MODE = stderr;

In the first example, a single equation has been estimated previously. yfit

is the forecast value of the endogenous variable for the current sample; if the

sample is the same as existed during the regression, then yfit shows the

tracking of y. Note that the forecast is estimated on the structural form of the

equation.

In the second example, a two equation system was last estimated; y1fit and

y2fit are the predicted values for the respective LHS variables.

In example 3, the dynamic residuals from the last regression are stored in

residft.

Example 4 shows how a 90% confidence band is derived for the fitted values

- the prediction limit.

In example 5, a the coefficients from a previous QR estimation are used to

6-127

FORCST

predict eq2, using an OLS methodology.

Example 6 shows an exponential smoothing forecast using the Holt-Winters

algorithm with α = 0.5 and β = 0.3; xfit will contain the historical values of x

until 1980, and a dynamic forecast from 1981 - 1992.

Example 7 shows a user specified forecast; userproc takes the matrix of the

vectors specified in VLIST as its argument, and returns the matrix specified in

avlist. Hence x is the nx3 matrix of c, x1, and x2, and sigmoid(x) returns

an nx5 matrix, whose columns are stored under the names av1, av2..av5.

In example 8, a Cobb-Douglas production function is estimated using NLS.

Predicted values are derived in q2 using the first forecast, and the standard

error in q2se for each observation in the second forecast.

See Also ARIMA, EXSMOOTH, QR, SOLVE

References Belsley, D., E. Kuh, and R. Welsch (1980), Regression Diagnostics: Identify-

ing Influential Data and Sources of Collinearity, John Wiley and Sons, New

York.

6-128

FPF Process

Purpose Creates a vector of log likelihoods for a frontier production function model.

Format z = FPF (resid, s, lam);

Input resid literal, vector of residuals.

s literal, standard error of residuals.

lam literal, ratio of the standard errors.

Output z Vector of log likelihoods.

Remarks The frontier production function coefficients are estimated using maximum

likelihood. Given a production function, f (x, β), the model is given by:

y = f (x, β) + ε

ε = ν − µ

Thus the residuals from the production function, ε, consist of two compo-

nents, ν and µ, where ν is N(0, σ2
ν), and µ ≥ 0. The model can be estimated

by determining two parameters, s, the standard error of ε, and lam, the ratio

of σµ to σν.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test41.prg.

Example OLS y c x;

PARAM s; value = ser;

PARAM b0, b1; value = coeff;

PARAM lam; value = .1;

FRML eq1 resid = y - b0 - b1*x;

FRML eq2 lf = fpf(resid,s,lam);

ML eq1 eq2;

In this example, OLS is used to get starting values of the structural coeffi-

cients b0, b1 and the standard error of the residuals s.

6-129

FPF Process

Source GXPROCS.SRC

See Also ML, NLS

References Madalla, G.S (1983), Limited-Dependent and Qualitative Variables in Econo-

metrics, Cambridge University Press, pp. 194-196.

6-130

FREQ

Purpose Computes frequency distributions under the current sample.

Format FREQ (options) vname ;

Input options optional, print options.

vname literal, required, variable name.

Remarks The FREQ statement estimates the frequency distribution for the variable de-

fined in vname. The counts are based on the current sample.

Print options are p —pause after each screen display.

Example 1. FREQ (p) x1 ;

2. TABULATE (p) c;

VLIST = x1;

A frequency distribution of x1 is produced under the current sample. The de-

scriptive statistics are not printed. An equivalent procedure using the TABULATE

command is shown in the second example.

See Also CROSSTAB, TABULATE

6-131

FRML

Purpose Defines a formula which can then be used in subsequent estimations.

Format (1) FRML fname vlist ;

(2) FRML fname vname = formula ;

(3) FRML fname formula reop value ;

(4) FRML fname vname := formula ;

Input fname literal, required, equation name.

formula literal, required, formula.

value numeric, required, RHS value.

reop literal, required, relational operator.

vlist literal, required, vector list.

vname literal, required, LHS variable name.

Remarks Each of the estimation procedures used by GAUSSX requires a knowledge

of the structural form to be estimated; this is defined in one, or a number

of FRML commands. There are four types of formulae; type I—linear, type

II—nonlinear; type 3 — nonlinear relational; and type 4 —non-linear macro

definition. Linear formulae are used by AR, ARCH, OLS, POISSON, QR, SURE,

VAR, 2SLS, and 3SLS, while non-linear formulae are used by FIML, GMM, ML,

NLS, and SOLVE.

Type I equations are used in linear estimations; they consist of a unique equa-

tion name, followed by a vector list. The first element in the list is the LHS

variable, while the remaining elements are the RHS variables (VAR is an ex-

ception). Lags are shown as in example 2 below. Care should be taken to

make sure that the lagged variables exist in the current sample. Thus, if the

sample is 1974 to 1981, and one uses x(-2), then data must exist for x2 for

1972 and 1973.

Type II equations are the structural equations used in non-linear estimation

and SOLVE; they consist of a unique equation name, followed by a non-linear

equation written in the form: LHS = formula. Note that for non-linear equa-

tions, any parameters or constants must be defined (PARAM, CONST) before

the equation is estimated. The syntax of formula is standard GAUSS. Thus

although a0*x1 is acceptable when a0 is a parameter (scalar), the element

by element rules must be used for vector operations i.e. x1.*x2. See the

remarks in GENR.

6-132

FRML

Type 3 equations consist of non-linear parameter relationships that are used

as constraints in non-linear estimation. The syntax consists of the form:

formula reop value

where reop is one of the three relational operators, <=,==, >=. The syntax of

formula is standard GAUSS , and value is a numeric value. Each of these for-

mulae are specified as parameter constraints using the EQCON option during

a non-linear estimation.

Type 4 equation are macro definitions. They are written exactly like Type II

equations, except that they are written in the form:

mname := formula

mname is the name of a macro, and formula is the value that will be substi-

tuted in place of the macro when an EQSUB option is encountered. See ANN

for an example.

Example 1. FRML eq1 y1 c x1 x2;

2. FRML eq2 y2 c x1 x1(-1) x1(-2) x2;

3. FRML eq3 y3 = a0 + a1*x1 + a2*x2ˆa3;

4. FRML eq4 y4 = a0 + a1*x1 + a2*x2;

5. FRML cq1 b0 + b1 >= .5;

FRML cq2 b3 == 0;

FRML cq3 b0ˆ2 + 2*b1 <= 2.4;

6. FRML es1 lcost := ln(w*l + v*m + r*k);

FRML es2 gama := sqrt((a1|a2|a3)’(a1|a2|a3));

Type 1 formulae are shown in examples 1 and 2; the LHS variable (y1, y2)

6-133

FRML

comes first, followed by the list of RHS variables. An intercept is shown by

the vector of unity (c). Each equation is identified by a user given name

(eq1,eq2). In example 2, lagged values of x1 are specified - the length of the

lag being shown in parenthesis.

Type II formulae are shown in examples 3 and 4. Example 3 shows a typical

non-linear equation—these are estimated using iterative non-linear proce-

dures which take longer to solve than for the linear case. Nothing stops a

non-linear equation actually being linear—as shown in example 4.

Parameter constraints are shown in example 5. The constraints can be linear

or nonlinear, and can involve a number of parameters, or simply provide a

bound for a parameter.

Macro definitions are shown in example 6. They can simply replace a part

of a formula that is used often, or can invoke specific parameter restrictions.

The macro substitution occurs at the EQSUB option.

See Also ANALYZ, CONST, EQCON, EQSUB, FEVAL, PARAM

6-134

FRONTIER

Purpose Computes the efficient frontier of a portfolio.

Format FRONTIER rlist ;

OPLIST = progopts ;

PERIODS = periods ;

VLIST = returns ;

Input rlist literal, required, asset list.

progopts literal, optional, options for FRONTIER.

periods numeric, optional, number of points (20).

returns literal, required, expected return for each asset.

Output risk mx1 vector of standard deviations.

return mx1 vector of rate of return.

weights mxk weighting matrix.

Remarks The FRONTIER statement returns uses the Markowitz model to identify the set

of efficient portfolios. Efficient portfolios have the lowest aggregate variance

for a given yield.

Given the data on the rate of return for each asset over the current sam-

ple, the frontier is evaluated for the number of points specified in periods.

The future expected return is specified in vlist. If m points on the frontier

are specified, then FRONTIER returns the mx1 vectors of standard deviation

(RISK) and rate of return (RETURN), as well as the mxk weighting matrix

(WEIGHT), where k is the number of assets specified.

Print options include d – print descriptive results, and p – pause after each

screen display.

The program control options are specified in progopts. The options available

are:

[PLOT]/NOPLOT Specifies whether a plot of the frontier is produced.

An example is given in test25.prg.

6-135

FRONTIER

Example let returns = 6.5 9.3 8.9 8.6;

FRONTIER ibm intel msft hp;

VLIST = returns;

PERIODS = 25;

This example calculates the efficient frontier at 25 points for the four stocks

based on the current sample. A plot of the frontier is also created. The GAUSS

variables RISK, RETURN and WEIGHTS are returned, with dimensions 25x1,

25x1, and 25x4 respectively.

6-136

FV

Purpose Calculate the future value of a stream of payments.

Format y = FV (pmt, r, n);

Input pmt nx1 vector, or scalar, periodic payment.

r nx1 vector, or scalar, interest rate at each period.

n scalar, number of periods.

Output y Scalar, future value of the periodic payments.

Remarks The FV statement returns the future value of a stream of payments over time.

The payment is made at the beginning of each period; thus the first element

of pmt earns interest in the first period. If pmt is a scalar, then the payment

stream consists of pmt at each period. If r is a scalar, then the interest rate is

assumed the same over the n periods. If pmt and/or r are vectors, they must

have lengths of n. Interest rate is per period; thus an annual rate of 9% paid

monthly for 20 years would have r = .09/12 = 0.0075, and n = 12 ∗ 20 = 240.

FV is pure GAUSS code, and is used independently of GAUSSX .

Example library gaussx ;

pmt = 100;

r = .1/12;

n = 120;

fval = fv(pmt,r,n);

fval = 20655.20

This calculates the future value of a stream of payments of $100 per month

for 10 years, with a discount rate of 10%

Source FINANCE.SRC

See Also AMORT, MCALC, PV

6-137

GAMMA D Process

Purpose Creates a vector of log likelihoods for a gamma process.

Format z = GAMMA D (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, scale index.

pvec literal, positive shape parameter.

Output z Vector of log likelihoods.

Remarks The gamma model can be used to estimate duration data. The expected

value of scalei is parameterized as:

E(scalei) = exp(indxi).

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index and pvec are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and the second column taking a value of unity if censored,

else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-138

GAMMA D Process

Example PARAM b0 b1 b2;

PARAM shape;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML ex1 llfn = gamma_d(fail, indx, shape);

ML (p,i) eq0 ex1;

2 FRML ex2 llfn = gamma_d(fail˜censor, indx, shape);

ML (p,i) eq0 ex2;

In example 1, a linear exponential gamma model is estimated using maxi-

mum likelihood, with the index defined in eq0, and the log likelihood in eq1.

Example 2 shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

References King, G., J. Alt, N. Burns and M. Laver (1990). “A Unified Model of Cab-

inet Duration in Parliamentary Democracies,” American Journal of Political

Science, Vol. 34(3) pp. 846-871.

6-139

GARCH process

Purpose Creates a vector of log likelihoods for a GARCH process.

Format z = GARCH (resid, avec, bvec);

z = GARCH T (resid, avec, bvec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for ARCH process.

bvec literal, vector of parameters for GARCH process.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

_ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the GARCH process are

estimated using maximum likelihood. The GARCH model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 +
∑
i=1

αiε
2
t−i +

∑
j=1

β jht− j

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged ε2 terms; this is the ARCH process. The β are the weights for the

lagged h terms; this is the GARCH process. Thus if α is just α0, and β is

zero, we have OLS; if α is a vector, and β is zero, we have standard ARCH;

otherwise we have some type of GARCH.

General

Notes

Models The following models are supported:

ARCH Single equation ARCH model.

GARCH Single equation generalized ARCH model.

AGARCH Single equation asymmetric GARCH model.

6-140

GARCH process

EGARCH Single equation exponential GARCH model.

FIGARCH Single equation fractionally integrated GARCH model.

IGARCH Single equation integrated GARCH model.

MGARCH Multiple equation multivariate GARCH model.

PGARCH Single equation power GARCH model.

TGARCH Single equation truncated GARCH model (GJR).

Formula Structure For all these procedures, the disturbance is typically

given in the first (structural) formula, for example:

FRML eq1 u = y - s0 - s1*x1 - s2*x2;

If a moving average process is required, this can be given in a second

formula; thus for an MA1 process: the formula would be:

FRML eq2 e = recserar(u,u[1],theta);

Finally, the likelihood is given in the third formula

FRML eq3 lllf = garch(e, a1|a2, b1);

Garch in the Mean Garch in the mean – for example, GARCH-M can be

carried out for each of the single equation methods, since the conditional

variance, ht, is available, and stored in each iteration under the global

_HT. The structural formula for such a process would be given by:

FRML eq1 u = y - s0 - s1*x1 - s2*x2 - thi*sqrt(_ht);

Residual distribution For the single equation models, the residuals are

assumed distributed normal, with the exception of EGARCH, in which

they are assumed to have a generalized error distribution (GED). The

Student-t distribution can also be specified by calling GARCH T, etc. An

additional distribution parameter (ν) is required.

Parameter Constraints Garch processes normally require parameter con-

straints to ensure stationarity and nonnegativity of the conditional vari-

ances.

α0 > 0

αi ≥ 0

βi ≥ 0∑
i=1

αi +
∑
j=1

β j < 1

6-141

GARCH process

These conditions can easily be imposed using the parameter constraint

command (EQCON) for non-linear estimation. See type 3 FRML and

EQCON for details.

Conditional Variance The conditional variance for all GARCH processes

is retrieved using the FORCST command, with MODE = CONDVAR. If no

range is specified, the estimated conditional variance based on the ac-

tual residuals and estimated parameters is returned. If a range is speci-

fied, the estimated conditional variance is returned up to the first date of

the range, and the forecast based on the information up to the first date

is returned for the period specified.

See the “General Notes for Non-Linear Models” under NLS, and the remarks

under ARCH. An example is given in test07.prg.

Example 1. ARCH y c x1 x2;

ORDER = 1 2;

PARAM g0 g1 g2 a0 a1 a2;

VALUE = coeff;

PARAM b1 b2;

VALUE = .1 .1;

FRML cs1 a0 >= 0.000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 b2 >= 0;

FRML cs6 a1+a2+b1+b2 <= .999999;

FRML eq1 resid = y - (g0 + g1*x1 + g2*x2);

FRML eq2 lf = garch(resid,a0|a1|a2,b1|b2);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5 cs6;

2. FRML eq1 e = y - g0 - g1*x - thi*sqrt(_ht);

FRML eq2 llfn = garch(e,a0|a1,b1);

PARAM g0 g1 a0 a1 b1 thi;

ML (p,d,i) eq1 eq2;

METHOD = nr bfgs nr;

TITLE = garch-m ;

6-142

GARCH process

STORE _ht;

3. FRML eq1 u = y - g0 - g1*x;

FRML eq2 e = recserar(u,u[1],theta);

FRML eq3 llfn = garch(e,a0|a1,b1);

PARAM g0 g1 a0 a1 b1 theta;

ML (p,d,i) eq1 eq2 eq3;

METHOD = nr bfgs nr;

TITLE = garch (MA1 process) ;

FORCST hfit;

MODE = condvar;

RANGE = 196701 196712;

In the first example, a linear GARCH model is estimated, using ARCH starting

values. The residuals are specified in eq1, and the log likelihood is returned

from eq2. Note the parameter restrictions to ensure that the variance remains

positive.

In the second example, a GARCH-M process is evaluated. The conditional

variance is then stored as a GAUSSX vector.

The third example shows how a GARCH process with an MA1 process for

the disturbance is estimated, and how the predicted conditional variance is

retrieved.

Source GARCHX.SRC

See Also ARCH, AGARCH, EGARCH, IGARCH, MGARCH, PGARCH, TGARCH, EQCON,

FRML, ML, NLS

References Engle, R.F. (1982), “Autoregressive Conditional Heteroscedasticity with Es-

timates of the Variance of the U.K. Inflation”, Econometrica, Vol. 50, pp.

987-1007.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroscedas-

ticity”, Journal of Econometrics, Vol. 31, pp. 307-327.

6-143

GARCH process

Gouieroux, C. (1997), ARCH Models and Financial Applications, Springer-

Verlag, New York.

6-144

GAUSS

Purpose Include a GAUSS command within a GAUSSX command file

Format gausscmnd ;

@@ gausscmnd ;

Input gausscmnd any legal GAUSS statement.

Remarks Any GAUSS command can be included in a GAUSSX command file; this is

useful, since much of the power of the GAUSS programming language can

be directly used by GAUSSX. The examples below show a number of applica-

tions; an additional example is shown in FETCH.

The @@ syntax forces output on; and thus should be employed when using the

GAUSS Application Modules. Additional information on using the Application

Modules under GAUSSX is given in Appendix D.

In some cases it may be necessary to use a GAUSS command which is iden-

tical to a GAUSSX command - in this case the @@ syntax identifies this com-

mand as a GAUSS command. This syntax will also place a comment in the

output file, without the need for an output on; statement.

Example 1. OUTPUT ON;

This comment will appear in the output file ;

OUTPUT OFF;

2. @@ The Variance Covariance matrix is : VCOV;

3. goto page1;

...

page1: ;

4. i = 1;

...

if i == 1; goto page1; endif;

...

page1: ;

6-145

GAUSS

5. @@ LOAD x[2,9] = data.asc;

6. i = 1;

do until i == 5;

...

i = i + 1;

endo;

Example 1 places a comment on the output file. In example 2, the matrix

vcov is printed out with the preceding comment; an output on; statement is

not required because of the @@ syntax. An unconditional branch is shown in

example 3, and a conditional branch in example 4. In example 5, a matrix is

loaded into the variable x; the @@ syntax is needed since LOAD is a GAUSSX

command. In equation 6, a do loop is shown; the code within the do loop can

be GAUSS or GAUSSX .

See Also COMMENT, FETCH, PAGE, STORE

6-146

GENALG

Purpose Control over the genetic algorithm process.

Format GAUSSX COMMAND vlist ;

METHOD = method ;

GENALG = control ;

Input vlist literal, required, variable list.

method literal, required, algorithm list.

control literal, optional, list of control options.

Remarks The genetic algorithm is a search algorithm that attempts to find a global opti-

mum by simulating an evolutionary process. Each member of a population (a

chromosome) has a set of genes (parameter values). The members breed,

and the genes can mutate. Successful chromosomes - ie those that are most

fit, as evaluated by the optimization process - survive, while the rest die.

This algorithm can be very useful for testing if one is at a global optimum,

as well as for situations when one gets a “failure to improve likelihood” error

message. It is also very robust when parameter upper or lower bounds are

encountered.

Genetic algorithm can be implemented as a step method during ML and NLS

estimations. Typically, one can use GA for the second element of method

to find the parameter values, and then use one of the other stepsize algo-

rithms for the final method to evaluate the Hessian. However, it is consid-

erably slower than the other stepsize methods, although the speed can be

adjusted by adjusting the control options. GA can be used with constrained

optimization - in this case a heuristically determined penalty function is used

to constrain the parameters to the feasible region.

Control over the GA options is provided by the GENALG option; this consists

of a 4 element vector control; these elements are:

1. The population size. Each member (chromosome) of the population

has a set of genes which correspond to parameter values. The larger

the population, the greater the variability, but the longer the estimation

time. Default = 30.

6-147

GENALG

2. Number of matings. While multiple matings result in an increased popu-

lation, only the original population size is maintained by culling the least

fit. Default = 4.

3. Probability of mutation. Genes suffer from mutation, on a chance basis.

Default = 0.4.

4. Degree of mutation. Should mutation occur, the degree of mutation is

specified with this parameter. Large values make for faster solution, but

can result in poorer optimization near the end (but see below). Default

= 0.25.

Unlike the other optimization algorithms, GA is not smooth - change occurs

sporadically. If there is no change in the best fitness after MAXSQZ iterations,

the degree of mutation is reduced by 50%. Convergence is determined by

testing when the standard deviation of the fitness is less than the second

element of TOL. Since each breeding consists of an iteration, MAXIT should

be set fairly high. An example is given in test21.prg.

Example NLS(p,i) eq1;

METHOD = gauss ga nr ;

GENALG = 25 2 .5 .2;

MAXIT = 100;

This example would undertake non-linear least squares on eq1 using gauss

as the initial step method, ga the remaining steps, except for the final step

(where one needs the Hessian) which is estimated using Newton-Raphson

(nr). The GA process uses a population of 25, with each individual mating

twice. Mutation occurs with probability 0.5, and the degree of mutation is 0.2.

See Also ML, NLS

6-148

GENR

Purpose To generate a new vector to be created according to a user specified formula,

and stored in GAUSSX.

Format GENR vname = formula ;

Input vname literal, required, variable name.

formula literal, required, formula.

Remarks Data is created only for those cases specified in the current sample. If a

vector has previously been defined over a sample space that is longer than

the current sample space, then the excluded observations are set to missing

value if REPL has been set by the OPTION command – this is the default. The

excluded observations remain unaffected if the NOREPL option has been set.

The formulae used can consist of any legal GAUSS expressions. It is thus

important that the user understands the GAUSS operations syntax. + and −

work as expected; however * and / correspond to matrix multiplication and lin-

ear equation solution respectively. Normal element by element multiplication

or division uses .* and ./ respectively - see example 2 below, and Chapter 4

of the GAUSS manual.

The user is responsible for making sure that all vectors used on the RHS have

previously been defined.

The user is likewise responsible for making sure that the vector operations

are conformable, and generate a vector of order n × 1, where n is the current

number of observations being read. Normally GAUSS will expand values so

that the vectors are conformable – thus the 4 in example 1 is automatically

transformed into an n × 1 vector of 4s, to be conformable with x1. Thus note

example 4, where pi (π) has to be explicitly multiplied by c to create an n × 1
vector.

C – a vector of unity – can be used in the same way as any other GAUSSX

vector. The vector ID takes all the values implied by the CREATE statement,

and can be used as a trend term.

Some GAUSS commands require that the order be specified. Example 6

shows how one deals with this – n is a global variable specifying the current

6-149

GENR

value for the number of rows.

GAUSSX uses two functions in addition to those specified in the GAUSS man-

ual; these are LAG, which creates a lagged variable, and NMV, (Not Missing

Value) which is used in data transformation when missing values exist.

Example 1. GENR y1 = 4 + 2*x1;

2. GENR y2 = gnp./cpi;

3. GENR y3 = 5 + 2*lag(y1,1) + 3*lag(y2,2);

4. GENR y4 = pi*c;

5. GENR y5 = a0 + a1*x3;

6. GENR y6 = y5 + rndn(n,1);

7. GENR y2 = (ln(x1) + abs(x2))ˆ2 ;

8. GENR smpvec = (y5 .le y6);

Example 1 shows a typical GENR operation. Example 2 shows how constant

GNP is defined - note the ./ operator. In example 3, the lag operator is shown

- y1 is lagged once, and y2 is lagged twice. In example 4, note that pi is

a GAUSS reserved word, and c is a GAUSSX reserved word. The series c

corresponds to a vector of unity – thus y4 is a vector of π. In example 5, co-

efficients that have previously been defined in a PARAM or CONST statement

are used as part of a formula. Example 6 shows the use of another GAUSSX

reserved word – n, the number of rows. Example 7 shows the use of GAUSS

functions ln and abs, as well as exponentiation. Example 8 shows how a

vector – smpvec – can be created which could then be used as a sample

selection criteria in a subsequent SMPL statement.

See Also DUMMY, FEVAL, FRML, LAG, LOAD, NMV, NUMDAT

6-150

GETM

Purpose Loads a matrix from a binary or ASCII file.

Format x = GETM (filename, k);

Input filename string, name of input file.

k literal, number of series (cols).

Output x Nxk matrix to be read from filename.

Remarks GETM allows the transfer of matrices from other applications. GETM returns

an Nxk matrix x from either an ASCII file or a binary data file of type double.

GETM is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

x = getm(c:\temp\mydata.bin, 6);

This example reads the matrix x from the binary file c:\temp\mydata.bin.

Source GXPROCS.SRC

See Also PUTM

6-151

GINI

Purpose Calculates Gini coefficients.

Format g = GINI (ymat);

Input ymat nxk matrix, income data for k countries.

Output g kx1 vector, Gini coefficients.

Remarks The GINI statement returns the Gini coefficient based on an income vector.

The vector should consist of incomes for equally distributed income classes.

Thus if there are 20 classes, the first would be the mean or median income

of the lowest 5%, the second would be for the next 5%, and the 20th for the

highest 5%. If ymat is a matrix with k columns, then each column is taken as

a separate country, and k coefficients are returned.

GINI is pure GAUSS code, and is used independently of GAUSSX .

Example library gaussx ;

ymat = loadd(income.dat);

g = gini(ymat);

Income data is loaded and stored in ymat, The GINI command calculates the

Gini coefficient for each column of ymat.

Source GXPROCS.SRC

6-152

GLOBOPT

Purpose Control over the global optimization process.

Format GAUSSX COMMAND vlist ;

METHOD = methlist ;

GLOBOPT = ctllist ;

Input vlist literal, required, variable list.

methlist literal, required, algoritm list.

ctllist literal, optional, list of control options.

Remarks Global optimization is a search algorithm that attempts to find a global opti-

mum by a direct search over potential optimal hypercubes. It is based on Lip-

schitzian optimization, but does not require the user to specify the a Lipschitz

constant. It is a direct search methodology, that splits the feasible space into

ever smaller hypercubes, and continues this process by ascertaining which

cubes are potentially optimal. This selection process allows for an efficient

evaluation of a high dimensional problem.

The feasible space is determined from the lower and upper bounds that the

user specifies for each parameter. The performance of the algorithm is di-

rectly related to the size of this space, so the smaller the difference between

the lower and upper bounds, the better.

The algorithm is particularly suited to ascertaining a global optimum when a

function has many local optima. Traditional hill climbing algorithms will find

one of the local optima, and are sensitive to initial starting values. A global

search algorithm, by contrast, will search the entire region, and find the global

optimum.

Global optimization can be implemented as a step method during ML and NLS

estimations. Typically, one can use GO for the second element of methodlist

to find the parameter values, and then use one of the other stepsize algo-

rithms for the final method to evaluate the Hessian. GO can be used with

constrained optimization - in this case a penalty function is used to constrain

the parameters to the feasible region.

Control over the GO options is provided by the GLOBOPT option; this consists

of a 4 element vector ctllist; these elements are:

6-153

GLOBOPT

1. Maximum number of function evaluations. This acts as a basis for initial

sizing of the problem, as well as providing a processing limitation. A

larger value will allow for more extensive searching, but longer estima-

tion time. Default = 20000.

2. Maximum number of divisions. Each hypercube can be divided and

subdivided up to this number of divisions. Default = 100.

3. Jones factor. This is used to determine potentially optimal hypercubes.

Experimental values between .01 and 1e-7 seem to work. Default =

0.0001.

4. Stopping criteria. GO is not smooth - changes occur sporadically. To

give the algorithm a chance to find better optimum, convergence is not

declared until the normal tol condition has been satisfied nstop times.

Default = 4;

Since each hypercube division consists of an iteration, MAXIT should be set

fairly high. A number of examples are given in test51.prg.

Example CREATE 1 1;

PARAM x1 x2 ;

LOWERB = -2 -2;

UPPERB = 2 2;

FRML eq1

fcn = (1+(x1+x2+1)ˆ2 .*

(19-14*x1+3*x1ˆ2-14*x2+6*x1.*x2+3*x2ˆ2)).*

(30+(2*x1-3*x2)ˆ2 .*

(18-32*x1+12*x1ˆ2+48*x2-36*x1.*x2+27*x2ˆ2));

ML(p,i) eq1;

METHOD = bfgs go nr ;

MODE = minimum;

GLOBOPT = 10000 100 .0001 4 ;

MAXIT = 100;

This example demonstrates GO being used to minimize the Goldstein-Price

function. ML is used on eq1 using bfgs as the initial step method, go the

remaining steps, except for the final step (where one needs the Hessian)

which is estimated using Newton-Raphson (nr). The feasible set is specified

6-154

GLOBOPT

using LOWERB and UPPERB in the PARAM statement.

See Also ML, NLS

6-155

GOMPERTZ Process

Purpose Creates a vector of log likelihoods for a Gompertz process.

Format z = GOMPERTZ (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, index.

pvec literal, positive parameter

Output z Vector of log likelihoods.

Remarks The Gompertz distribution has been extensively used in the modeling of mor-

tality data, and is suitable for modeling data with monotone hazard rates that

change exponentially with time.

The Gompertz proportional hazards model is specified as:

H(t, x, β) = exp(γt) exp indx

where H(t, x, β) is the hazard function, and γ is a parameter that controls the

shape of the baseline hazard.

indx is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index are estimated using maximum likelihood;

thus this can be used for linear or non-linear models. The Gompertz model

conventionally uses a linear index.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and the second column taking a value of unity if censored,

else zero.

The baseline survival measures can be derived by setting the index to just

the constant.

6-156

GOMPERTZ Process

See the “General Notes for Non-Linear Models” under NLS. For residuals and

survival measures, see the description under DURATION. An example is given

in test57.prg.

Example PARAM b0 b1 b2 gama;

FRML eq0 indx = b0 + b1*arrtemp + b2*plant;

1 FRML ex1 llfn = gompertz(fail, indx, gama);

ML (p,i) eq0 ex1;

2 FRML ex2 llfn = gompertz(fail˜censor, indx, gama);

ML (p,i) eq0 ex2;

hr = exp(coeff);

"Hazard Ratio " hr; call keyw;

3 CONST b1 b2;

VALUE = 0 0;

ML (p,i) eq0 ex1;

In example 1, a Gompertz model is estimated using maximum likelihood, with

the index defined in eq0, and the log likelihood in eq1.

Example 2 shows a similar estimation when some of the data is censored.

The hazard ratio is simply the exponent of the coefficients.

Example 3 shows how one would compute the constant only model.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-157

GMM

Purpose Estimates the coefficients of a non-linear equation or system of equations

using generalized method of moments.

Format GMM (options) elist ;

BOUND = level ;

EQCON = cnstrnt ;

EQSUB = macro ;

INST = instlist ;

MAXIT = maxit ;

MAXSQZ = maxsqz ;

METHOD = meth ;

MODE = mode ;

POSDEF = pdname ;

SIMANN = simann ;

STEP = step ;

TITLE = title ;

TOL = tolerance ;

TRUST = trust ;

WEIGHT = wtname ;

WINDOW = window ;

Input options optional, print options.

elist literal, required, equation list.

level numeric, optional, percentage confidence level.

cnstrnt literal, optional, list of constraint equations.

macro literal, optional, macro equation list.

instlist literal, required, list of instruments.

maxit numeric, optional, maximum number of iterations (20).

maxsqz numeric, optional, maximum number of squeezes (10).

meth literal, optional, algorithm list (NR NR NR).

mode literal, optional, estimation mode (GMM).

pdname literal, optional, positive definite algorithm (NG).

simann numeric, optional, SA options (5 .85 100 20).

step literal, optional, step type (LS).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

trust numeric, optional, TR options (.1 1 .001 3).

6-158

GMM

wtname literal, optional, weighting variable.

window literal/numeric, optional, spectral window.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

GRADVEC Gradient vector.

LGCOEFF Vector of Lagrangian coefficients.

QF Quadratic form.

VCOV Parameter covariance matrix.

COVU Residual Covariance matrix.

Remarks Generalized method of moments estimation (Hansen, 1982) requires the es-

timation of coefficients β using a set of instruments Z that satisfy the orthog-

onality conditions:

E(ε(β)′Z) = 0

where ε are the (stacked) residuals:

ε(β) = y − f (X, β)

and E(εε′) = Ω. A natural objective function - the minimum distance - is the

quadratic form:

QF(β) = ε(β)′ZW−1Z′ε(β)

where the optimal weighting matrix W = Z′ΩZ. The estimated asymptotic

covariance matrix for β is:

Var(β) =
[
G′Z(Z′ΩZ)−1Z′G

]−1

where G is ∂ε(β)/∂β′.

Each structural equation is specified as a Type II FRML, and the instruments

(Z) are specified in an INST statement. The entire set of instruments is used

for each equation. Estimation occurs in three stages. In the first, consistent

(though inefficient) estimates of β are derived on the assumption that ε is

homoscedastic with no autocorrelation; thus these are the 2SLS estimates.

6-159

GMM

Using the consistent estimate of Ω derived from this first stage process, a

parameter estimate is derived; these are the 3SLS estimates. Using these

parameter estimates, an efficient estimate of β can be derived taking into ac-

count heteroscedasticity and or serial correlation. For a system of equations,

with the homoscedastic/no autocorrelation assumption, the GMM estimates

coincide with 3SLS estimates. 2SLS and 3SLS estimates can be derived by

specifying mode as 2SLS or 3SLS respectively.

Only the NR and SA step size methods are available with GMM (or non-linear

2SLS / 3SLS). The METHOD option is used exactly as in NLS. Robust estima-

tion of the Ω matrix is specified using ROBUST as the final iteration method

- this generates the White estimator for heteroscedastic disturbances. The

Newey-West (1987) estimator for autocorrelated disturbances is implemented

if ROBUST is specified and the spectral window and lag length is given in win-

dow – for details, see the WINDOW reference section

See the “General Notes for Non-Linear Models” under NLS, and the examples

given in test02.prg.

Example PARAM a0 a1 a2 b0 b1 b2 ;

FRML eq1 y1 = a0 + a1*x1 + a2*x2;

FRML eq2 y2 = b0 + b1*x3ˆb2;

1. GMM (p,d,i) eq1 eq2;

METHOD = nr nr robust;

INST = c x1 x4 x5;

2. GMM (p,i) eq2 ;

METHOD = nr nr robust;

MAXIT = 40;

INST = c x1 x4 x5;

WINDOW = 2;

3. GMM (p,i) eq2 ;

MODE = 2SLS;

INST = c x1 x2;

6-160

GMM

In the first example, the system of equations eq1 and eq2 are estimated by

GMM. The weighting matrix used at the second stage uses the White het-

eroscedastic estimator. Descriptive statistics (d) are displayed, and the

coefficient values are printed at each iteration (i), with a pause (p) after

each screen display.

The second example is a non-linear single equation GMM estimation, but

the weighting matrix is the Newey-West heteroscedastic and autocorrelated

consistent estimator, with a lag length of 2, and a BARTLETT (default) window.

The third example shows an alternative method of specifying a non-linear

2SLS estimation in GAUSSX.

See Also FRML, ML, NLS, TITLE, WEIGHT, WINDOW

References Davidson R., and J.G. MacKinnon (1993), Estimation and Inference in Econo-

metrics, Oxford University Press, Oxford.

Greene, W.H. (1993), Econometric Analysis, 2nd ed. Macmillan, New York.

Hansen, L.P. (1982), “Large Sample Properties of Generalized Method of

Moments Estimation”, Econometrica, Vol. 50, pp. 1029-1054.

Newey, W.K., and K.D. West (1987), “A Simple Positive Semi-Definite Het-

eroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econo-

metrica, Vol. 55, pp. 703-708.

6-161

GRAPH

Purpose Graphs one variable against another.

Format GRAPH (options) var1 var2 ;

FNAME = filename ;

GROUP = grouplist ;

MODE = mode ;

SYMBOL = symlist ;

TITLE = title ;

Input options optional, print options.

var1 literal, required, first variable.

var2 literal, required, second variable.

filename literal, optional, macrofile.

grouplist literal, optional, group variable list.

mode literal, optional, graph mode (LINE).

symlist literal, optional, symbol description.

title string, optional, user defined title.

Remarks The GRAPH command allows one variable to be graphed against another.

The scale is automatically set. Graphing by groups is available using the

GROUP option.

General

Notes

GAUSSX supports two graphic packages. In the default, GRAPH uses GAUSS’s

Publication Quality Graphic (PQG) routines. The graph can be customized by

specifying PQG global variables before the GRAPH command. The graphic file

graphic.tkf is written on the SAMPLE path specified in the GAUSSX desktop.

The other package, GAUSSPlot, (if installed), will be used if specified in the

GAUSSX configuration file, or by using the OPTION command. Under GAUSSPlot,

the graph is most easily customized by creating a macro file of the changes

made to the graph interactively, and specifying this file in filename. Cus-

tomization can also be specified using symlist.

The default graph mode is a LINE graph. A scatter graph can be obtained

using MODE = SCATTER. The default display mode - colour or mono can be

explicitly set using COLOUR/MONO in the OPTION command.

6-162

GRAPH

Print options include p – pause until the graphic is closed, m – display for

five seconds (PQG), h – print graph, and r – rotate graph (PQG). Examples of

GRAPH are given in tutor.prg and in test53.prg.

Example 1. GRAPH x1 x2;

2. GRAPH x1 x2;

MODE = SCATTER;

3. OPTION pqg;

_pbox = 1; _pcolor = 5;

GRAPH (p) x1 x2;

TITLE = X1 vs. X2 ;

4. OPTION gplot;

GRAPH (p) x1 x2;

...

GRAPH (p) x1 x2;

FNAME = test4.mcr;

In the first two examples, observations in the current sample for each of the

elements in x1 are graphed against the corresponding element of x2. The

first example generates a line graph, while the second example creates a

scatter graph.

In the third example, a graphic screen is displayed using PQG, and execution

pauses (p) until the graph is closed. The line is colored green, and a box is

drawn round the screen, and the user defined title is displayed.

Example 4 shows how a graphic can be customized using GAUSSPlot. From

the GAUSSPlot window generated with the first GRAPH command, a macro

record session is initiated by selecting files/macro/record from the GAUSSPlot

menu. The macro is saved with the name test4 in the GAUSSX data path

folder - typically gauss\dat. The graph is customized using the interactive

GAUSSPlot GUI by double clicking the graphic element to be changed. The

macro is saved when the stop macro button is clicked. Running the GRAPH

6-163

GRAPH

command with the macro specified in FNAME creates the customized graph.

See Also GROUP, OPTION, PLOT, TITLE

6-164

GROUP

Purpose Allows a GAUSSX command to be repeated for different groups.

Format GAUSSX COMMAND vlist ;

GROUP = grouplist ;

Input vlist literal, required, variable list.

grouplist literal, required, group variable list.

Remarks It is often convenient to be able to specify a descriptive command to be repli-

cated over a number of groups – this is the equivalent of the keyword BY in

SAS. This could be done using multiple sample statements, but the GROUP

option is simpler. For each replication, the data used is determined by both

the current group and the existing sample. It can be used as an option for

any descriptive command, as well as most estimation commands. A header

is printed before each iteration stating the current values of the group vari-

ables.

An example is given in test01.prg.

Example COVA x1 x2 x3;

GROUP = z1 z2;

In this example, a COVA is undertaken on every combination of z1 and z2.

A header is printed giving the current values of these variables before each

output. Thus if z1 takes five discrete values, and z2 takes three values, the

COVA command will be replicated fifteen times.

See Also COVA, GRAPH, NLS, OLS, PLOT, PRINT

6-165

GUMBEL Process

Purpose Creates a vector of log likelihoods for a Gumbel process.

Format z = GUMBEL (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, location index.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The Gumbel model can be used to estimate duration data. The expected

value of loci is parameterized as:

E(loci) = indxi

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index are estimated using maximum likelihood; thus

this can be used for linear or non-linear models.

The Gumbel distribution is also known as the largest extreme value distribu-

tion. The expected value of location is the mode of y. The coefficients, β

and scale, are estimated using maximum likelihood; thus this can be used for

linear or non-linear models. The scale parameter must be positive.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-166

GUMBEL Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = gumbel(fail,indx,scale);

ML (p,i) eq0 eq1;

METHOD = nr bhhh bhhh;

2 FRML eq2 llfn = gumbel(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

In example 1, a largest extreme value model is estimated using maximum

likelihood, with the index defined in eq0, and the log likelihood in eq1. Exam-

ple 2 shows the same estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-167

HECKIT

Purpose Estimate the coefficients for the sample selection model using the Heckman

two step estimation procedure.

Format HECKIT (options) elist ;

CATNAME = categories ;

MAXIT = maxit ;

METHOD = method ;

TITLE = title ;

TOL = tolerance ;

WEIGHT = wtname ;

Input options optional, print options.

elist literal, required, equation list.

categories literal, optional, list of category names.

maxit numeric, optional, maximum number of iterations (20).

method literal, optional, covariance method (NONE).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

LLF Log likelihood.

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

6-168

HECKIT

Remarks The Heckman two step estimation procedure for the sample selection model

has been implemented as a single command, with the option for the cor-

rected (Greene) asymptotic parameter covariance matrix. elist consists of

two elements - first the equation name for the PROBIT, followed by the equa-

tion name for the OLS. Sample selection, etc. is carried out automatically.

The estimated Mills ratio is stored in the variable _LAMDA.

Print options include p —pause after each screen display, d —print descrip-

tive statistics, e —print elasticities, i —print parameters at each iteration, q

—quiet - no screen or printed output, s —print diagnostic statistics, and v

—print parameter covariance matrix. These print options apply to both the

PROBIT and the OLS estimation.

There are three available covariance methods for the OLS estimation. The

default is NONE. Heteroscedastic-consistent variance-covariance matrix of pa-

rameters, corrected for the degrees of freedom, is available by setting method

to ROBUST. Greene (1981) has proposed an asymptotic parameter covariance

matrix, corrected both for heteroscedasticity and for the fact that Mills ratio is

an estimated quantity; this can be specified by setting method to GREENE.

The variables described in “Outputs” are the outputs from the OLS estimation.

See the “General Notes for Linear Models” under OLS, QR, and the examples

given in test08.prg.

Example FRML eq1 sex c x1 x2 x3;

FRML eq2 wage c x1 z1 z2 z3;

HECKIT (i,p,d) eq1 eq2;

METHOD = GREENE;

CATNAME = male female;

In this example, a binomial probit is estimated - sex takes one of two values;

the explanatory variables are x1, x2 and x3. The user can specify names

for each category by using the CATNAME option. The sample is then set for

those cases for which sex equals unity, and an OLS is carried out on eq2,

with Mills ratio as an additional explanatory variable. The standard errors are

based on the Greene corrected covariance matrix. The sample is reset to the

6-169

HECKIT

original sample at the end of the estimation.

See Also FRML, OLS, QR, TITLE, WEIGHT

References Greene, W.H. (1981), “Sample selection bias as a specification error: Com-

ment”, Econometrica, Vol. 49, pp. 505-513.

Heckman, J.J. (1979), “Sample selection bias as a specification error”, Econo-

metrica, Vol. 47, pp. 153-161.

6-170

IGARCH Process

Purpose Creates a vector of log likelihoods for an integrated GARCH process.

Format z = IGARCH (resid, avec, bvec);

z = IGARCH T (resid, avec, bvec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for the ARCH process.

bvec literal, vector of parameters for GARCH process.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

_ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the IGARCH process are

estimated using constrained maximum likelihood. The IGARCH model is given

by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 +
∑
i=1

αiε
2
t−i +

∑
j=1

β jht− j

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged ε2 terms; this is the ARCH process. The β are the weights for the

lagged h terms; this is the GARCH process.

avec is a vector of parameters giving the weights for the lagged squared

residuals. The first element, which is required, gives the constant. bvec is the

vector of parameters for the GARCH process. Thus this is a standard GARCH

model, but with the identity restriction that:∑
i=1

αi +
∑
j=1

β j = 1

6-171

IGARCH Process

Note the stationarity conditions described under GARCH.

See the “General Notes for GARCH” under GARCH, and the “General Notes

for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM c0 c1 c2;

VALUE = coeff;

PARAM a0 a1 a2 b1 ;

VALUE = sigsq .6 .2 .2 ;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 a1+a2+b1 == 1;

FRML eq1 resid = y - (c0 + c1*x1 + c2*x2);

FRML eq2 lf = garch(resid,a0|a1|a2,b1);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5;

In this example, a linear IGARCH model is estimated using constrained maxi-

mum likelihood, with OLS starting values. The residuals are specified in eq1,

and the log likelihood is returned from eq2. Note the parameter restrictions

to ensure that the variance remains positive – in particular, since the con-

straint cs5 must hold, the initial values of the parameter should not violate

this constraint.

Source GARCHX.SRC

See Also GARCH, EQCON, FRML, ML, NLS

6-172

INVERT

Purpose Find the inverse values of a function.

Format ix = INVERT (&f, x0, z, kval);

Input &f Pointer to the function f (x, z).
x0 literal, scalar or Nx1 vector of starting value for x.

z literal, scalar or Nx1 vector, optional argument

kval literal, scalar or Nx1 vector, numeric, objective value.

Output ix value of x such that f (ix, z) = kval.

Remarks This procedure inverts a given function using Newton’s method. Thus good

starting values are essential. The function has two arguments, x, for which

the inverse is required, an z, a second argument so as to provide flexibility. A

missing value is returned if convergence is not achieved.

INVERT is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

proc sincos(x,z);

retp(sin(x).*cos(x));

endp;

kvec = { .3, .4, .5 };

x0 = .2;

ix = invert(&sincos,x0,0,kvec);

ix’; 0.32175055 0.46364761 0.7853979

sincos(ix,0)’; .3000 .4000 .5000

This example inverts the sincos function for the values shown in kvec.

Source GXPROCS.SRC

6-173

INVGAUSS Process

Purpose Creates a vector of log likelihoods for an inverse Gaussian process.

Format z = INVGAUSS (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, location index.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The inverse Gaussian model can be used to estimate duration data. The

expected value of yi is parameterized as:

E(yi) = indxi

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index and pvec are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-174

INVGAUSS Process

Example PARAM b0 b1 b2;

PARAM scale;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = invgauss(fail, indx, scale);

ML (p,i) eq0 eq1;

2 FRML eq2 llfn = invgauss(fail˜censor,indx, scale);

ML (p,i) eq0 eq2;

In example 1, an inverse Gaussian model is estimated using maximum likeli-

hood, with the index defined in eq0, and the log likelihood in eq1. Example 2

shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-175

KALMAN

Purpose Estimates the coefficients in a state space model, in which the coefficients

follow a random process over time.

Format KALMAN (options) arglist ;

OPLIST = oplist ;

VLIST = vlist ;

Input options optional, print options.

arglist literal, required, variable list or equation name.

oplist literal, optional, program options.

vlist literal, optional, time varying coefficients.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

RSS Residual sum of squares.

SER Standard error of the regression.

LLF Log likelihood.

VCOV Parameter covariance matrix.

Remarks The Kalman filter model allows for the vector of coefficients β in the classical

linear model to randomly change over time. The model is specified in two

parts - the measurement equation and the transition equation. The structural

equation:

yt = α + Xtβt + εt εt ∼ N(0,H)

is standard, except that the kx1 vector β changes over time. Note that it is

assumed that the model is homoscedastic. The transition equation specifies

the time path of β:

βt = γ + Tβt−1 + µt µt ∼ N(0, σ2Q)

Thus once an initial value of β0 is chosen, then the solution for β at each time

period (the state vector) will depend only on the matrix T, and the stochastic

vector µ. Conditional on the dependent variable y and the independent vari-

ables X, the model can be evaluated once the system matrices are specified.

These are:

6-176

KALMAN

α a scalar constant in the measurement equation.

H the variance of the residuals in the measurement equation (assumed

homoscedastic).

γ a kx1 vector of constants in the transition equation.

T a kxk matrix of transition coefficients.

Q a kxk symmetric matrix of the variance of the residuals in the transition

matrix (up to a scalar factor).

β0 a kx1 vector of coefficients at time zero in the structural equation.

Ω0 a kxk symmetric matrix of the variance of β0 (up to a scalar factor) .

The form of the structural equation is specified in the same manner as in OLS,

using either a variable list, or a Type I FRML command. The data need not all

fit in core. Weighting is not applicable for KALMAN. Print options include p —

pause after each screen, d — print descriptive statistics, and q —quiet - no

screen or printed output.

The program control options are specified in oplist. The options available are:

B0 = vector of prior coefficients β0 for the structural equation. P0

must also be specified. In the default, β0 is estimated from the

first k observations in the sample.

P0 = covariance matrix (Ω0) of β0. σ2 is factored out of this ma-

trix. B0 must also be specified. In the default, this is set to

(X′kXk)−1 where Xk is the matrix of RHS variables for the first k
observations of the sample.

CTRANS = constant vector (γ) for the transition equation. In the default

this is a kx1 vector of zeros.

BTRANS = matrix of transition coefficients (T). In the default, this is a kxk
identity matrix.

VTRANS = covariance matrix (Q) of the residuals in the transition equa-

tion. σ2 is factored out of this matrix. In the default this is a

kxk identity matrix.

CMEAS = constant scalar (α) for the measurement equation. In the de-

fault this is zero.

VMEAS = constant, homoscedastic variance term (H) of the residuals in

the measurement equation. Default is the identity matrix.

6-177

KALMAN

STATE = svec. The state vectors are stored using svec as the root.

Thus if there are three coefficients in the measurement equa-

tion, then the state vectors are stored as svec1, svec2 and

svec3 respectively.

PRDERR = vector of one step ahead prediction errors.

VARPRDER = vector of variance of the one step ahead prediction errors.

RECRES = vector of recursive residuals.. These can also be generated

using the TEST command.

SMOOTH/[NOSMOOTH] Specifies whether the state vector is smoothed.

PRINT/[NOPRINT] Specifies whether a description of the various matri-

ces actually used should be printed out. This is useful for

debugging.

The matrices T, Q, H, α, γ, Ω0, and the vector β0 can be specified by the

user, or default values are used. Optimally, they can be optimally chosen

using the KALMAN process under ML, prior to running KALMAN. If they are

specified by the user, then this must occur before the Kalman estimation,

using standard GAUSS commands. For each matrix, each individual element

may be a number, a parameter or constant name, or the name of a vector. If

the element is a scalar, the value is fixed for the entire estimation. If it is a

vector, which must be created beforehand, then at each time period during

the Kalman estimation, the appropriate value of the vector is substituted into

the element of the matrix. In this way, both the matrix of transition coefficients

(T) and the covariance matrix of transition residuals (Q) can vary over time.

The constant terms (α, γ) can also be time varying. The names of these

vectors must be given in vlist.

The regression results reported by KALMAN are based on the residuals cre-

ated at each time interval. The likelihood function is from Harvey (1981). The

coefficients reported are the values of the evolving state vector at the last

observation. Thus, if there are n observations, then the coefficient values are

β0 after having been transformed by the transition equation n times. If the

default matrices are used, but Q is set to the null matrix, the Kalman process

and recursive estimation are identical.

The computed state vectors, residuals and variances are stored in the GAUSSX

workspace, and can be printed in the normal way. Note that the FORCST

6-178

KALMAN

statement used after a Kalman estimate will return fitted values based on the

last value of the state vector - the coefficients as printed out by the Kalman

procedure.

A number of examples of the KALMAN procedure are given in test15.prg.

Example 1. KALMAN m c r gnp;

OPLIST = recres=resid;

2. let tmat[2,2] = t11 t12 t21 t22;

KALMAN y c x;

OPLIST = btrans=tmat state=kfit ctrans=.5 smooth;

PRINT (p) kfit1 kfit2;

3. let tmat[3,3] = 1 0 0

0 a2 0

0 0 t33;

GENR trend = numdate(_ID);

GENR t33 = .8 + .01*trend;

KALMAN (p,d) y c x1 x2;

OPLIST = btrans=tmat print;

VLIST = t33;

In the first example, a Kalman filter is applied to the regression of m on c, r,

and gnp. Default values are used for the matrices - thus T and Q are identity

matrices, and β0 and Ω0 are estimated from the first three observations. The

recursive residuals are stored in a vector called resid.

In the second example, a Kalman filter is applied to the regression of y on c

and x. A transition matrix tmat is specified, where the elements have already

been defined. A constant .5 is specified in the transition equation. The

filter produces smoothed estimates of the state vectors, corresponding to the

coefficients on c and x; these are stored, and subsequently printed, as kfit1

and kfit2.

The third example shows the transition coefficient matrix T as varying over

time. In this example, T is specified as a diagonal matrix with the first el-

6-179

KALMAN

ement on the principal diagonal being unity, the second element being a2,

(a parameter or constant previously estimated), and the third element, t33,

changing over time. The form of t33 is specified in a GENR statement prior

to the Kalman estimation. In the estimation, BTRANS is set equal to tmat in

the OPLIST option. Since tmat has time varying components, they must be

described in VLIST. A description of the various matrices is requested by the

PRINT option in OPLIST.

See Also KALMAN, OLS, TEST

References Kalman, R. (1960), “A New Approach to Linear Filtering and Prediction Prob-

lems”, Journal of Basic Engineering, Transactions ASME, Series D, Vol. 82,

pp. 35-45.

Harvey, A,C. (1981), Time Series Models, Philip Allen, London.

Judge, G.G., et. al. (1985), The Theory and Practice of Econometrics, 2nd

edition, Wiley, New York.

6-180

KALMAN Process

Purpose Creates a vector of log likelihoods from a Kalman filter process.

Format z = KALMAN (y, x);

Input y literal, dependent variable.

x literal, matrix of independent variables.

Output z Vector of log likelihoods.

Remarks The KALMAN command can be used within a FRML command. It is used

within the context of maximum likelihood to estimate the parameters of the

various Kalman matrices, and requires that all the observations can reside

in core. In this context, the command does not produce a vector of state

matrices, but only returns the log likelihood. The options specified in the

OPLIST command for KALMAN also apply in this context.

See the “General Notes for Non-Linear Models” under NLS. Also see KALMAN

for a full discussion of the Kalman filter, and the options available under

GAUSSX . An example of a Kalman estimation procedure running under max-

imum likelihood is given in test15.prg.

Example 1. PARAM a1 a2 a3;

VALUE = 1 1 1;

let tmat[3,3] = a1 0 0

0 a2 0

0 0 a3;

FRML eq1 plst = a1 + a2 + a3;

FRML eq2 lf = kalman(y,c˜x1˜x2);

ML (p,i) eq1 eq2 ;

OPLIST = btrans=tmat print;

KALMAN (p) y c x1 x2;

OPLIST = btrans=tmat;

2. PARAM a1 a2 a3;

VALUE = 1 1 1;

let tmat[3,3] = a1 0 0

0 a2 0

6-181

KALMAN Process

0 0 t33;

FRML eq1 t33 = a3 + .005*r;

FRML eq2 plst = a1 + a2 + a3;

FRML eq3 lf = kalman(y,c˜x1˜x2);

ML (p,i) eq1 eq2 eq3;

OPLIST = btrans=tmat print;

VLIST = t33;

These two examples show how the parameters of a Kalman filter coefficient

transition matrix could be estimated using ML. In both these examples it is

assumed that both the transition matrix (T) and the covariance matrix (Q) are

diagonal. The default – an identity matrix – is used for Q, and the initial values

for β and Ω are based on the first three observations. In the first example,

the T matrix, which is time invariant, is defined using a GAUSS statement,

with parameter values for the elements on the principal diagonal. The first

equation eq1 is a dummy equation - it is only required since GAUSSX scans

the equations to see which parameters it needs to estimate. The log likeli-

hood is returned from the second equation eq2, which defines the structural

model - a LHS variable (y), and three explanatory variables (c, x1, and x2)

written as a matrix. tmat is specified as the coefficient transition matrix in

the OPLIST statement. The ML estimates of the elements of tmat are re-

turned, and stored in a1, a2 and a3. The last KALMAN command reports the

standard Kalman results, based on these parameter values.

The second example shows how a time varying matrix can be estimated.

The third coefficient, a3 is now replaced with a vector, t33, which is specified

in eq1 as a linear function of r, with the intercept to be determined as a

parameter. The second and third equations are unchanged. The time varying

vector is specified on the VLIST option.

Source KALMAN.SRC

See Also KALMAN, ML, PARAM

6-182

KEEP

Purpose To retain only the specified variables in the current GAUSSX work-space.

Format KEEP vlist ;

Input vlist literal, optional, variable list.

Remarks The KEEP statement retains only the specified variables in the GAUSSX work-

space. The vectors C, ID and SAMPLE are also retained. The current SMPL

remains in effect. Vectors with missing values are saved as is.

Example KEEP x1 x2 x3;

A GAUSSX workspace is created with the variables x1, x2 and x3.

See Also DROP, RENAME, STORE

6-183

LAG

Purpose To create a vector of lagged values.

Format z = LAG (x, n);

Input x literal, required, variable name.

n numeric, required, lag length.

Output z Lagged vector.

Remarks The LAG command can be used within a GENR command. It creates a lagged

variable, with the length of the lag specified by n, over the current sample. The

initial n observations, as well as observations outside the sample, are set to

missing value. The default maximum lag is 12; this can be changed using the

OPTION command.

The LAG command can also be used within a non-linear FRML providing that

the data can all reside in core. If this is not possible, a lagged variable can

be created using a GENR, and the new variable can be used instead. LAG is

also used for dynamic solutions of equations - see the example in SOLVE.

Example 1. GENR y = x1 + .5*lag(x1,1) + .25*lag(x1,2);

2. GENR plag = lag(p,2);

FRML eq1 q = a0 + a1*plag;

FRML eq2 q = a0 + a1*lag(p,2);

In the first example, a vector y is created from the weighted sum of x1, x1

lagged once and x1 lagged twice. In the second example, the two equations

are identical; however the second would be required for a dynamic SOLVE.

See Also GENR, PDL, SOLVE

6-184

LHS

Purpose Draws a Latin Hypercube Sample from a set of uniform distributions for use

in creating a Latin Hypercube Design.

Format p = LHS (n, k, dsgn);

Input n scalar, number of runs.

k scalar, number of factors.

dsgn scalar or matrix, design parameters.

Output p nxk matrix of probabilities.

Remarks Latin hypercube sampling (LHS) was developed to generate a distribution

of collections of parameter values from a multidimensional distribution. A

square grid containing possible sample points is a Latin square iff there is

only one sample in each row and each column. A Latin hypercube is the

generalization of this concept to an arbitrary number of dimensions. When

sampling a function of k variables, the range of each variable is divided into n
equally probable intervals. n sample points are then drawn such that a Latin

Hypercube is created. Latin Hypercube sampling generates more efficient

estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random per-

mutations of the first n integers in each of k columns and then transforming

those integers into n sections of a standard uniform distribution. Random

values are then sampled from within each of the n sections. This sampling

scheme does not require more samples for more dimensions (variables); this

independence is one of the main advantages of this sampling scheme. An-

other advantage is that random samples can be taken one at a time, remem-

bering which samples were taken so far.

Once the sample is generated, the uniform sample from a column can be

transformed to any distribution by using the quantile functions, e.g. normal_-

cdfi. Different columns can have different distributions.

There are a number of algorithms available; the algorithm selected is deter-

mined by the value of dsgn:

0 Standard LHS.

6-185

LHS

1 Nearly orthogonal LHS, no criteria.

Ω Correlated LHS, no criteria, where Ω is a kxk symmetric covari-

ance matrix.

v Nearly orthogonal LHS, with criteria, where v is a 3x1 design vec-

tor.

The specification of v is given below:

v[1] Fill: 0 - even spread, 1 - end to end.

v[2] Maximum number of column exchanges per factor.

v[3] Criteria:

1. Average absolute correlation

2. Condition number

3. Maximum VIF - main effect

4. Maximum VIF - main effect + quadratic;

5. Maximum VIF - main effect + cross;

6. Maximum VIF - main effect + quadratic + cross;

7. J2 optimality

8. Modified L2 (Cioppa)

9. Euclidean minmax

If v is specified, the number of levels m = n/k, must be integer. The effect of

the fill parameter can be seen as follows:

k=1, m = 4, fill = 0: p = .125 .375 .625 .875

k=1, m = 4, fill = 1: p = 0 .3333 .6666 1

LHS is pure GAUSS code, and can be used independently of GAUSSX. An

example of LHS is given in test62.prg.

Example

library gaussx ;

rndseed 12345;

n = 30; k = 6;

fill = 0; ntry = 1000; crit = 2;

dsgn = fill | ntry | crit;

6-186

LHS

p = lhs(n,k,dsgn);

x = normal_cdfi(p,0,1);

In this example, a 30x6 nearly orthogonal Latin Hypercube Sample is derived

using the best condition number as the criteria. This creates a 30x6 matrix

of probabilities, which are then used to create a set of standard normally

distributed variates, each column being orthogonal to every other column..

Source LHS.SRC

See Also COPULA, CORR, MVRND

6-187

#LIST

Purpose Preprocessor command to reinstate the command file listing.

Format #LIST ;

Remarks Normally the entire GAUSSX command file listing is provided in the output

file, prior to the execution listing. The command file listing can be selectively

suppressed by using the #LIST and #NOLIST commands. #NOLIST; switches

off the listing. #LIST; switches it back on.

Example #LIST;

See Also #NOLIST, PAGE

6-188

LIST

Purpose Assigns a single name to a list of GAUSSX variable names.

Format LIST listname vlist ;

RANGE = range ;

SYMBOL = rootname ;

Input listname literal, required, list name.

vlist literal, required, variable list.

range numeric, optional, list range.

rootname literal, optional, element name.

Remarks It is frequently convenient to replace a long list of variable names with list-

name, such that listname can be used later in the program whenever the

list of variables would have been used. listname may be any legal GAUSS

variable name - and is thus limited to 8 characters.

vlist may include lags, and can also include the names of other lists; indeed,

lists may be nested indefinitely. Since LIST is an executable command, the

contents of a list can be redefined by maintaining the same listname, but

changing vlist. In the case of nesting, list names that occur in the variable list

will contain the variables as they exist at the time of execution.

The creation of a list of variable names with a common stem is also possible.

The stem is specified in rootname, and the range is specified in range.

The LIST statement registers listname as a list, and places vlist into listname.

Since listname is a global, it can be manipulated using standard GAUSS - see

example 2.

Example 1. LIST rhslist c gnp relp;

LIST ivlist c gnp inv rate;

FRML eq1 cons rhslist;

OLS cons c gnp relp;

OLS cons rhslist;

OLS eq1;

2SLS eq1;

INST = ivlist;

6-189

LIST

2. LIST avlist dum;

avlist = 0 $+ AV $+ ftocv(seqa(1,1,20),2,0);

3. LIST xlist ;

SYMBOL = xx;

RANGE = 1 20;

The first example shows three OLS regressions that are exactly equivalent.

The 2SLS code shows how a list can be used for the instruments. The sec-

ond example shows how a list of variables AV01 to AV20 can be defined. In

the third example, the list xlist consists of the twenty variable names xx1

through xx20.

6-190

LOAD

Purpose To load data into GAUSSX

Format LOAD vname = data ;

Input vname literal, required, variable name.

data numeric, required, data values.

Remarks The LOAD command allows data to be entered directly from the command

file. The number of observations specified in data must be consistent with

the current sample.

If a vector has previously been defined over a sample space that is longer

than the current sample space, then the excluded observations are set to

missing value if REPL has been set by the OPTION command (default), and

remain unaffected if the NOREPL option has been set.

Example LOAD gnp = 100 110 120 132 143 165 180 190 200;

In this example, nine values are loaded into a vector called gnp.

See Also GENR, OPTION

6-191

LOADPROC

Purpose To load and compile gradient and Hessian procedures.

Format LOADPROC ;

GRADIENT = & gradname ;

HESSIAN = & hessname ;

Input &gradname string, optional, procedure name.

&hessname string, optional, procedure name.

Remarks The LOADPROC statement loads the gradient and Hessian procedures pre-

viously stored with the SAVEPROC command from the GAUSSX data path,

and compiles them. This is much faster than recreating them using symgrad

and symhess. Note that the model structure and parameter space must re-

main unchanged for the gradient and Hessian procedures to be valid.

A dummy procedure with the same name has to be specified for compilation

integrity.

LOADPROC requires GAUSS 4.0 or higher.

Example proc garchp; endp;

LOADPROC;

GRADIENT = garchp ;

ML (p,i,s) eq1 eq2;

METHOD = nr bhhh nr;

GRADIENT = &garchp;

This example retrieves the previously stored procedure garchp, and uses it

for the analytic gradient in the ML estimation.

See Also ML, SAVEPROC

6-192

LOGISTIC Process

Purpose Creates a vector of log likelihoods for a logistic process.

Format z = LOGISTIC (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, location index.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The expected value of yi is parameterized as:

E(yi) = indxi

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index and pvec are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models. The scale pa-

rameter must be positive.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-193

LOGISTIC Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = logistic(fail,indx,scale);

ML (p,i) eq0 eq1;

METHOD = nr bhhh bhhh;

2 FRML eq2 llfn = logistic(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

In example 1, a logistic model is estimated using maximum likelihood, with

the index defined in eq0, and the log likelihood in eq1. Example 2 shows a

logistic model estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-194

LOGIT Process

Purpose Creates a vector of log likelihoods for a binomial logit model.

Format z = LOGIT (y, x);

Input y literal, vector of alternative chosen.

x literal, vector, utility.

Output z Vector of log likelihoods.

Remarks The structural coefficients are estimated using maximum likelihood; thus this

can be used for linear or non-linear models.

Example FRML eq1 xb = a0 + ln(a1*x1 + a2*x2);

FRML ellf llf = logit(y1,xb);

ML (p,i) eq1 ellf;

METHOD = bhhh bhhh nr;

This example estimates a non-linear binomial logit model.

Source PROBITX.SRC

See Also ML, MNL, NLS, QR

6-195

LOGLOG Process

Purpose Creates a vector of log likelihoods for a loglogistic process.

Format z = LOGLOG (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, index of the means.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The expected value of yi is parameterized as:

E(ln(yi)) = indxi

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index and pvec are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models. The scale pa-

rameter, pvec must be positive.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-196

LOGLOG Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = loglog(fail,indx,scale);

ML (p,i) eq0 eq1;

METHOD = nr bhhh bhhh;

2 FRML eq2 llfn = loglog(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

In example 1, a loglogistic model is estimated using maximum likelihood, with

the index defined in eq0, and the log likelihood in eq1. Example 2 shows a

loglogistic model estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-197

LOGNORM Process

Purpose Creates a vector of log likelihoods for a lognormal process.

Format z = LOGNORM (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, location index.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The lognormal model can be used to estimate duration data. The expected

value of yi is parameterized as:

E(ln(yi)) = indxi

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index and pvec are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models. The scale pa-

rameter must be positive.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-198

LOGNORM Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

FRML ec1 scale >= 0;

1 FRML eq1 llfn = lognorm(fail,indx,scale);

ML (p,i) eq0 eq1;

eqcon = ec1;

2 FRML eq2 llfn = lognorm(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

eqcon = ec1;

In example 1, a lognormal model is estimated using constrained maximum

likelihood, with the index defined in eq0, and the log likelihood in eq1. Exam-

ple 2 shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-199

LOOP

Purpose Repeat a block of code for each sector in a multisectored body of data.

Format LOOP symbol seclist ;

.

GAUSS and/or GAUSSX code
.

ENDLOOP;

Input symbol literal, required, symbol for sector component.

seclist literal, required, vector list of sector symbols.

Remarks The names of the series must all have a generic part, common for the series

across sectors, and a sector part that is common across series. Any num-

ber of GAUSS or GAUSSX statements may appear between the LOOP and

ENDLOOP statements. GAUSSX substitutes the sector names for the sector

symbol throughout; one must ensure that the resulting variable name does

not exceed 8 characters.

LOOP..ENDLOOP is functionally equivalent to DOT..ENDDOT in TSP.

Example LOOP # uk us can;

FRML eq# ue# c trend infl#

OLS (p,d) eq#

ENDLOOP;

In this example, a regression of unemployment (UE) against inflation (INFL)

and trend is undertaken for the UK, US, and Canada. The first argument

in the LOOP statement is the symbol that is used to represent the sector

component in the series. The remaining arguments are the sector symbols.

In the above example, the OLS is run three times, first for the UK, then for the

US, then for Canada.

6-200

LP

Purpose Solves the linear programming problem.

Format LP (options) ename ;

EQCON = cnstrnt ;

EQSUB = macrolist ;

MODE = lpmode ;

TITLE = title ;

Input options optional, print options.

ename literal, required, objective function equation.

cnstrnt literal, required, list of constraint equations.

macrolist literal, optional, macro equation list.

lpmode literal, optional, optimization mode ([maximize]/minimize).

Output COEFF Vector of coefficients.

LGCOEFF Vector of Lagrangian coefficients.

LLF Value at optimum.

Remarks The LP command solves the standard linear programming problem - that is

maximizing (or minimizing) a linear objective function subject to linear con-

straints and upper and/or lower bounds. The linear objective function is spec-

ified in ename, while the constraints are defined in the equations specified in

cnstrnt. The coefficients are specified in a PARAM statement, along with the

lower and upper bounds. In the default, LP maximizes the objective function;

minimization occurs when lpmode is specified as minimum.

Print options include d – descriptive statistics, (if variables are included), p –

pause after each screen display, and q – quiet - no screen or printed output.

An example is given in test45.prg

6-201

LP

Example PARAM x1 x2 x3 x4;

LOWERB = 0 0 0 0;

UPPERB = 100 100 100 100;

FRML eq1 cost = 2.0*x1 + 2.5*x2 + 1.8*x3 + 1.4*x4;

FRML ec1 x1 + x2 <= 200;

FRML ec2 x3 + x4 <= 400;

FRML ec3 x1 + x3 >= 325;

FRML ec4 x2 + x4 >= 300;

LP (p) eq1;

EQCON = ec1 ec2 ec3 ec4;

MODE = minimize;

In this example, there are four parameters to be estimated (x1, x2, x3,

x4) such that the objective function (cost) is minimized, subject to the four

constraints. The parameters are specified in the PARAM statement, along with

the upper and lower bounds. The linear objective function is specified in eq1

while the constraints are specified in ec1, ec2, ec3, ec4. A minimization

is carried out, since mode is specified as minimize.

See Also FRML, PARAM

6-202

LYAPUNOV

Purpose Computes the maximum Lyapunov exponent for a time series.

Format LYAPUNOV (options) vname ;

MAXSTEP = gridstep ;

OPLIST = oplist ;

ORDER = order ;

PERIODS = periods ;

RANGE = range ;

TITTLE = title ;

Input options optional, print options.

vname literal, required, variable name.

gridstep literal, optional, grid resolution (20)

oplist literal, optional, program options

order literal, required, embedding dimension

periods literal, optional, lags. (1 1)

range literal, optional, replacement range.

Output _LYAEXP Lyapunov exponent.

Remarks The Lyapunov exponent of a dynamical system is a measure that determines

for a point of phase space how quickly trajectories that begin at this point

diverge over time. The number of Lyapunov exponents is equal to the num-

ber of dimensions of the embedding phase space; however the maximal Lya-

punov exponent (MLE) is usually reported, since it determines the predictabil-

ity of a dynamical system.

The Lyapunov exponents Li are calculated as

Li = lim
t→∞

1/t log2(r(0)/ri(t))

which can be thought of as following the motion of an infinitesimally small

sphere, with an initial radius r(0), that starts from the point for which the

exponent should be calculated. On its trajectory, it will expand unevenly, so

that it becomes an ellipsoid with time-dependent radii ri(t) in each principal

direction. A stable point has an MLE that is negative, a limit cycle has an MLE

6-203

LYAPUNOV

that is zero, while a strange attractor (chaos) has an MLE that is positive.

Thus a positive MLE implies that nearby points, no matter how close, will

diverge to any arbitrary separation. Examples include brownian motion, as

well as strange attractors.

GAUSSX uses the Wolf algorithm to evaluate the Lyapunov exponent. The

embedded dimension (order) must be specified - it should be at least as large

as the minimum number of dynamical variables needed to model the dynam-

ics of the system. The lag used to reconstruct a phase space from a time

series is specified as the first element of periods, and the evolution length is

specified as the second element of periods. A rule of thumb is that the evolu-

tion length can equal the phase lag - however, small evolution lengths require

larger processing time. The grid resolution is specified in gridstep, and the

minimum and maximum separations are given in range

The program control options are specified in oplist, with default values in

parentheses. The options available are:

DT = Specifies the sampling rate for continuous functions - see the

Lorentz example in test49.prg. For discrete functions, this

usually takes the default value (1).

MAXBOX = Specifies the maximum number of boxes allocated for the Wolf

algorithm. While the default is usually sufficient, this value can

be changed if a larger number is required (6000).

THMAX = Specifies the maximum orientation error, in degrees (30).

Print options include p —pause after each screen display, and q —quiet -

no screen or printed output. Additional information is available through the

on-line help (Alt-H). An example is given in test49.prg.

Example LYAPUNOV (p) x;

ORDER = 3;

PERIODS = 1 4;

In this example, the Lyapunov exponent of a time series (x) is investigated,

using an embedded dimension of 3, a default time lag of 1, and an evolution

size of 4 periods.

6-204

LYAPUNOV

See Also CORDIM

References Wolf, A., J.B. Swift, H.L. Swinney, and J.A. Vastano (1985), “Determining

Lyapunov Exponents from a Time Series”, Physica Vol. 16D (3), pp 285-317.

6-205

MCALC

Purpose Given three of the following: principal, interest rate, term, periodic payment;

evaluate the fourth.

Format y = MCALC (p, r, pmnt, n);

Input p Nx1 vector or scalar, loan amount.

r Nx1 vector or scalar, interest rate per period.

pmnt Nx1 vector or scalar, periodic payment.

n Nx1 vector or scalar, number of periods.

Output y Nx1 vector or scalar, corresponding to the argument that is scalar

zero.

Remarks MCALC will return a vector or scalar corresponding to whichever argument

is zero; it thus functions like a mortgage calculator. The interest rate is per

period; thus an annual rate of 9% paid monthly for 20 years would have r =
.09/12 = 0.0075, and n = 12 ∗ 20 = 240.

MCALC is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

p = 100000;

r = .1;

let nper = 10 15 20 25;

pmnt = mcalc(p,r/12,0,12*nper);

pmnt’ = 1321.5075 1074.6051 965.0217 908.7008

This calculates the monthly payments on a $100,000 mortgage at 10% amor-

tized over 10, 15, 20 and 25 years

Source FINANCE.SRC

See Also AMORT, FV, PV

6-206

MCMC

Purpose Bayesian estimation using Markov Chain Monte Carlo simulation.

Format MCMC (options) vlist ;

USERPROC = & procname ;

CATNAME = catname ;

PRIOR = prior ;

REPLIC = replic ;

TITLE = title ;

VALUE = value ;

Input options optional, print options.

vlist literal, required, vector list or equation name.

&procname literal, required, pointer to user proc.

catname literal, required, label for each parameter.

prior literal, optional, priors.

replic numeric, replication info (1000 0 100).

title string, optional, title.

value literal, optional, starting values.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

Remarks The MCMC command carries out Markov Chain Monte Carlo simulation over

a user defined procedure procname. The data is specified in vlist, which can

be specified by using a list of variables, or by using an equation name(s)

which has been previously specified as a Type I FRML command. Priors are

specified in prior, these can be numeric values or variable names (scalar,

vector or matrix). The names of each parameter is given in catname, which

must the same length as the parameter vector that is updated in procname.

An initial parameter value can be specified in value; the default is missing. At

the end of the set of iterations, descriptive statistics are given for the elements

given in catname.

6-207

MCMC

Print options include i – show iteration count, p – pause after each screen

display, q – quiet - no screen or printed output, and s – print convergence

diagnostics, cumulants and confidence bands.

Replication information is specified in replic, which can consist of up to three

elements. The first element is the total number of replications. The second

element is the number of replications to be used for burn-in; the realizations

created during the burn-in are not included in the statistics. The third element

is the frequency of the printing of the iterations.

procname is a user defined procedure, which creates a realization of a con-

tinuous state Markov chain process. The type of realization is up to the user

- the literature includes a Gibbs sampling algorithm, a metropolis chain, or

the Hastings algorithm. procname takes no inputs, and returns no outputs.

Rather, there are a number of helper utilities that do the basic input and up-

date work:

{y,x,k} = dataget; Retrieve data specified in vlist; the first element

of vlist becomes y, and the remainder becomes x. k is a

vector of the number of columns in x for each equation.

coeff = coeffget; Retrieve starting values of coefficients from value.

If no starting values are specified, coeff is specified as miss-

ing.

rslt = priorget(vname,defval); Retrieve parameter value from

prior with name vname; if vname does not exist, the value spec-

ified in defval is used.

call mcupdate(iter,coeff); Updates the storage matrix with the

current value of the coefficients (coeff), as well as printing

out iteration (iter) information.

A number of examples of the MCMC procs are given in bayes.src in the

gauss\src directory; these include:

AR(k) with heteroscedastic residuals.

binomial probit.

heteroscedastic binomial probit.

multinomial probit.

6-208

MCMC

OLS with residuals distributed normal.

OLS with residuals distributed t.

OLS with heteroscedastic residuals.

Poisson.

Tobit.

SURE.

Convergence diagnostics are included with the s option. These include Geweke’s

NSE (Numerical Standard Error), RNE (Relative Numerical Efficiency), and a

Chi-squared test for parameter stability. Additional information is available

through the on-line help (Alt-H).

When adding your own MCMC code, use the code examples in bayes.src as a

template, and add the proc name to the gaussx.lcg library file. A menu of the

test applications is given in test29.prg; the examples are in the gauss\prg\mcmc

directory.

Example rndseed 123456;

FRML eq1 y c x1 x2;

MCMC (i,s) eq1;

CATNAME = const x1 x2 sig2;

REPLIC = 1100 100 200;

USERPROC = &g_ols_t;

PRIOR = df=3;

In this example, an MCMC simulation is executed 1100 times over the func-

tion g_ols_t. Diffused priors are used, except for the degrees of freedom

for the t distribution, which is set at 3. The endogenous variable is y, and

the explanatory variables are a constant, x1 and x2. The coefficient vector

updated by g_ols_t consists of the structural parameters c x1 x2 and the

residual variance sig2. The first 100 realizations are scrapped as burn in.

The iteration count is displayed every 200 iterations. When the realizations

are complete, simulation statistics (mean, variance, quartiles) are displayed.

References Chib, S. and Greenberg, E. (1996), “Markov Chain Monte Carlo Simulation

Methods in Econometrics”, Econometric Theory, 12, 409-431

6-209

MCMC

Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches

to the Calculation of Posterior Moments”, in J.O. Berger, J.M. Bernardo, A.P.

Dawid, and A.F.M. Smith (eds.), Bayesian Statistics 4, 169-194. Oxford: Ox-

ford University Press, 1992.

Gelman A., Carlin J., Stern H., and D. Rubin, (1995), Bayesian Data Analysis,

CRC.

Gilks L., W. Richardson, and D. Spiegelhalter, (1996), Markov Chain Monte

Carlo in Practice, CRC.

Robert, C.P, and G. Casella (2000), Monte Carlo Statistical Methods, Springer

Verlag, New York.

6-210

MCS

Purpose Undertakes a Monte Carlo Simulation over a block of code.

Format MCS (options) BEGIN ;

CATNAME = catname ;

REPLIC = replic ;

OPLIST = progopts ;

TITLE = title ;

VLIST = vlist ;

.

GAUSS and/or GAUSSX code
.

MCS END ;

Input options optional, print options.

catname literal, required, label for each parameter.

replic numeric, optional, replication info (100 0 1).

progopts literal, optional, program options.

title string, optional, title.

vlist literal, required, vector list or vector name.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

MCITER Current iteration number.

MCMAT MCS work matrix.

Remarks The MCS command carries out a Monte Carlo simulation over a block of code,

which can consist of GAUSS and/or GAUSSX commands. At the end of each

replication, the elements in the vector vlist are extracted; vlist may be a vector

list, or the name of an array. The length of catname must equal the number of

elements pointed to in vlist. At the end of the simulation, descriptive statistics

are given for the elements of vlist.

Replication information is specified in replic, which can consist of up to three

elements. The first element is the total number of replications. The second

6-211

MCS

element is the number of replications to be used for burn-in; the realizations

created during the burn-in are not included in the statistics. The third element

is the frequency of the printing of the iterations. For jackknife, the total number

of replications is the sample size, and burn-in are ignored.

During the simulation, a screen is presented which shows the current repli-

cation, the value of the parameters in the current replication, the number of

warnings, and the time to completion. Some options can be changed at run

time while the simulation is progressing by pressing any key, and then se-

lecting the required option from the menu. The current iteration is stored in

_mciter

Print options include i – print vlist after each iteration, p – pause after each

screen display, q – quiet - no screen or printed output, and s – print cumulants

and confidence bands.

The program control options are specified in progopts. The options available

are:

SCREEN/[NOSCREEN] Turns screen on/off.

OUTPUT/[NOOUTPUT] Turns output on/off.

[WARN]/NOWARN Warnings are enabled/disable.

[IGNORE]/EXCLUDE/ABORT Specifies the response to a warning.

[SIMULATE]/BOOTSTRP/JACKNIFE Specifies the type of simulation.

See the OPTION command for details on the first three choices. If a GAUSSX

warning occurs during the simulation, one can choose to ignore it, exclude

the case, or abort the simulation. If EXCLUDE is specified, the replication is

repeated.

Three types of simulation can be carried out. The first, SIMULATE, is a stan-

dard Monte Carlo simulation. The BOOTSTRP option is identical, (the user

chooses how the stochastic component is generated), and only affects the

title. The JACKNIFE option results in replic being set to the sample size, and

the MCS variances being scaled by the sample size. Examples of all three

methods are given in test17.prg.

6-212

MCS

If there are k elements in the vector specified in vlist, and there are n repli-

cations, then the nxk matrix is stored in mcmat, which is available after the

Monte Carlo run.

Example rndseed 123456;

MCS (i,s) BEGIN;

CATNAME = val_g0 val_g1 val_g2 ser_g0 ser_g1 ser_g2;

VLIST = cofstd;

REPLIC = 50;

OPLIST = nowarn exclude;

GENR y = (2 + 3*x1)*x2ˆ.5 + rndn(n,1);

PARAM g0 g1 g2;

FRML eq1 y = (g0 + g1*x1)*x2ˆg2;

NLS eq1;

cofstd = coeff|stderr;

MCS END:

In this example, a Monte Carlo simulation of a non-linear estimation is carried

out. The parameters of interest are the coefficient values and their standard

errors – they are stored in a vector called cofstd at the end of each repli-

cation. The MCS BEGIN command at the beginning of the block is informed

of this vector in the VLIST statement, and a set of labels are given in CAT-

NAME. The block of code is delineated with the MCS END command. After 50

replications, the simulation statistics will be produced.

References Judge, G.G., et. al. (1988), Introduction to the Theory and Practice of Econo-

metrics, 2nd ed. John Wiley & Sons, New York.

6-213

ME

Purpose Evaluates the probabilities for a maximum entropy class of problem.

Format p = ME (k, &fct);

Input k scalar, required, number of alternatives.

&fct literal, required, pointer to constraints procedure.

meStepTol global scalar, step size tolerance (default = 1e-8).

mePrint global scalar, output flag: 0 - off, 1 - on. (default=1)

Output p kx1 vector of probabilities.

Remarks The maximum entropy problem is solved by explicitly solving the first order

binding conditions, The probabilities are constrained to be non-negative, as

well as satisfying the adding up normalization constraint, and the moment

consistency constraints specified in &fct. This is a pointer to a procedure that

computes the moment consistency constraints. The procedure must have

one input argument, the kx1 vector of probabilities, and one output argument,

the rx1 vector of computed constraints that are to be equal to zero.

An example of ME is given in test26.prg.

ME is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

k = 6; x = seqa(1,1,k); y = 3.0;

proc mcproc(p); retp(y-x’p); endp;

p = me(k,&mcproc);

This example evaluates the probability of each fall of a biased dice based on

the single observed “average” mean - in this case 3.0. For a fair dice, y would

be 3.5.

Source MAXENTX.SRC

References Golan, A., G. Judge and D. Miller, et. al. (1996), Maximum Entropy Econo-

metrics: Robust Estimation with Limited Data, John Wiley & Sons, New York.

6-214

MGARCH Process

Purpose Creates a vector of log likelihoods for a multivariate GARCH process.

Format z = MGARCH (resid, x, c0, c1, amat, gmat);

Input resid literal, matrix of residuals.

x literal, matrix of weakly exogenous variables.

c0 literal, matrix of parameters for constants.

c1 literal, matrix of parameters for x.

amat literal, matrix of parameters for ARCH process.

gmat literal, matrix of parameters for GARCH process.

Output z Vector of log likelihoods.

ht Matrix of conditional variance.

Remarks The structural coefficients and the coefficients of the MGARCH process are

estimated using maximum likelihood. The Multivariate GARCH model is given

by:

ht = C0 +C1 x̃t +

q∑
i=1

Aiηt−i +

p∑
i=1

Biht−i

where

y jt = f j(xt, β j) + ε jt j = 1, . . . ,G

εt ∼ N(0,Ht)

ht = vech(Ht)

x̃t = vech(xt x′t)

ηt = vech(εtε′t)

In general, there are G non-linear equations, with a residual vector ε j for

each equation. Based on these residuals, a conditional variance term, Ht is

estimated. Two methods are available - the VEC formulation, and the BEKK

formulation; Ht under BEKK should stay positive definite, while this is not nec-

essarily the case under VEC.

The conditional variance ht consists of four sets of terms; these are a con-

stant (C0), the parameters for the weakly exogenous variables (C1), the ARCH

6-215

MGARCH Process

process (Ai), and the GARCH process (Gi). MGARCH-M can also be carried

out, since the conditional variance, ht, is available, and stored in each iteration

under the global _HT. The order of each of these depends on the process:

Given G equations, there are S = .5G(G + 1) elements to be estimated for

each Ht. In addition, if there are J vectors x of weakly exogenous variables,

there are M = .5J(J + 1) product pairs, and thus M coefficients to be esti-

mated.

Parameter Dimensions

VEC BEKK

Rows Columns Rows Columns
ε N G N G
x N J N J

C0 S 1 G G
C1 S M G M
Ai S S G G
Gi S S G G

Note that for C0 under BEKK, the GxG matrix is upper triangular. Each addi-

tional ARCH or GARCH term requires an additional Ai or Gi respectively - see

the example below.

The residuals must be specified in a first set of FRMLs, and then the MGARCH

process is specified in a second FRML. Note the use of the EQSUB command

to simplify writing the likelihood. The estimation is rapid for a two equation

system, where the GARCH term(s) are diagonal, since the process can be

vectorized. For three or more equations, the conditional variance is derived

recursively, which takes considerably longer.

The conditional variance (consisting of S time series) for the MGARCH pro-

cesses is retrieved using the FORCST command, with MODE = CONDVAR. If no

range is specified, the estimated conditional variance based on the actual

residuals and estimated parameters is returned. If a range is specified, the

estimated conditional variance is returned up to the first date of the range,

6-216

MGARCH Process

and the forecast based on the information up to the first date is returned for

the period specified.

See the “General Notes for Non-Linear Models” under NLS, and the remarks

under GARCH. An example is given in test19.prg.

Example FRML ers1 e1 = y1 - b11 - b12*x1;

FRML ers2 e2 = y2 - b21 - b22*x2;

FRML elff llfn = mgarch(e1˜e2,0,cvec,0,amt1˜amt2,gmat);

FRML eqv1 cvec := c01|0|c03;

FRML eqv2 amt1 := a11˜0˜a13|0˜0˜0|a31˜0˜a33;

FRML eqv3 amt2 := diagrv(eye(3),b11|0|b33);

FRML eqv4 gmat := diagrv(eye(3),g11|0|g33);

PARAM c01 c03 a11 a13 a31 a33 b11 b33 g11 g33;

ML (p,i) ers1 ers2 elff;

METHOD = bhhh bhhh nr;

EQSUB = eqv1 eqv2 eqv3 eqv4;

FORCST cv11 cv12 cv22;

METHOD = CONDVAR;

In this example, a system of equations is estimated with residual variance

specified as simultaneous GARCH. Although not shown, it makes sense to

model each equation separately to get initial starting values. The residuals

are specified in ers1 and ers2, and the log likelihood is returned in elff.

The model here is a GARCH(2,1) VEC process, without exogenous influences.

Note how the parameters are specified as separate macros. The conditional

variance is returned using the FORCST command.

Source GARCHX.SRC

See Also ARCH, EGARCH, FORCST, GARCH, ML, NLS

References Engle, R.F., and K.F. Kroner (1995), “Multivariate Simultaneous Generalized

ARCH”, Econometric Theory, Vol. 11(1) pp. 122-150.

6-217

ML

Purpose Estimates the coefficients of a user specified likelihood function.

Format ML (options) elist ;

BOUND = level ;

EQCON = cnstrntlist ;

EQSUB = macrolist ;

GENALG = genalg ;

GLOBOPT = globopt ;

GRADIENT = &gradproc ;

HESSIAN = &hessproc ;

MAXIT = maxit ;

MAXSQZ = maxsqz ;

METHOD = methname ;

MODE = modetype ;

PENALTY = penalty ;

POSDEF = pdname ;

SIMANN = simann ;

STEP = step ;

TITLE = title ;

TOL = tolerance ;

TRUST = trust ;

WEIGHT = wtname ;

Input options optional, print options.

elist literal, required, equation list.

level numeric, optional, percentage confidence level.

cnstrntlist literal, optional, list of constraint equations.

macrolist literal, optional, macro equation list.

genalg numeric, optional, GA options (30,4 .4 .25).

globopt numeric, optional, GO options (20000 100 .0001 4).

&gradproc literal, optional, pointer to gradient procedure.

&hessproc literal, optional, pointer to Hessian procedure.

maxit numeric, optional, maximum number of iterations (20).

maxsqz numeric, optional, maximum number of squeezes (10).

methname literal, optional, algorithm list (BFGS BFGS BFGS).

modetype literal, optional, mode list

penalty literal, optional, penalty function (1000).

6-218

ML

pdname literal, optional, positive definite algorithm (NG).

simann numeric, optional, SA options (5 .85 100 20).

step literal, optional, step type (LS).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

trust numeric, optional, TR options (.1 1 .001 3).

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

LGCOEFF Vector of Lagrangian coefficients.

GRADVEC Gradient vector.

LLF Log likelihood.

VCOV Parameter covariance matrix.

Remarks The ML command estimates the parameters of a model via the maximum

likelihood method. The user specifies a FRML (or FRMLs) which computes

the log-likelihood given a set of parameters. If a number of equations are

specified, they are evaluated sequentially, and the output of the last equation

is taken to be the log-likelihood. The form is very similar to NLS. Minimization

of a function can be implemented by specifying MODE = MINIMIZE.

Four hill climbing estimation methods are available: BFGS, DFP, BHHH, and

NR. For optimization problems with many local optima, one can use one of

the direct search methods - GA, GO, NM and SA - as the second element of

METHOD.

The user can optionally specify the name of a procedure for the gradient of the

log-likelihood; this can be used by all the estimation methods. This reduces

estimation time considerably. &gradproc is a pointer to a procedure written

by the user; this procedure takes no arguments, and returns an nxk matrix

where k is the number of coefficients to be estimated, in the same order as

the order specified in the PARAM statement. The Hessian can likewise be

specified by the user by specifying a pointer &hessproc. This is only used to

6-219

ML

evaluate the Hessian if the method chosen is NR. This returns the sum of the

kxk matrix of second differentials over n observations.

GAUSSX uses automatic differentiation if symgrad and/or symhess are used

as the names for the gradient and/or Hessian procedures respectively. This

requires that Maple 9 or higher is installed. See the Appendix for details.

Two step models can be estimated using the Murphy Topel variance correc-

tion by specifying the step for each estimation using the mode statement. For

the first step, specify MODE = STEP1, and the second step MODE = STEP2.

See the “General Notes for Non-Linear Models” under NLS, and the examples

given in test09.prg, test42.prg and test47.prg.

Example 1. PARAM a1 a2 a3 ; value = .5 .5 .5;

FRML eq1 m = a1 + a2*x1 + a3*x2;

FRML eq2 llfn = y.*m - exp(m) - ln(y!);

ML (p,d) eq1 eq2;

METHOD = bfgs bfgs nr;

ML (p,d) eq1 eq2;

METHOD = bfgs bfgs nr;

GRADIENT = &grd;

proc grd;

retp(y-exp(m)).*(c˜x1˜x2) ;

endp;

2. PARAM a1 a2 a3 sig; VALUE = 1 1 1 1;

FRML tob1 m = a1 + a2*z2 + a3*z3;

FRML tob2 llf1 = -(z1-m)ˆ2./(2*sig) - .5*ln(2*pi*sig);

FRML tob3 llf2 = ln(cdfnc(m./sqrt(sig)));

FRML tob4 llfn = (z1 .gt 0).*llf1 + (z1 .le 0).*llf2;

ML (p,i) tob1 tob2 tob3 tob4;

TITLE = Tobit Model ;

3. FRML ml1 xb1 = a0 + a1*exper + a2*educ + a3*white;

FRML ellf1 llfp = probit(employ,xb1,0);

6-220

ML

FRML ml2 mr2 =ln(pdfn(-xb1)./cdfn(-xb1));

FRML ml3 resid = wage - (b0 +b1*educ + b2*exper

+ b3*fprof + b4*mr2);

FRML ellf2 llfn = normal(resid);

PARAM a0 a1 a2 a3;

ML (p,i) ml1 ellf1;

METHOD = nr nr nr;

MODE = step1;

TITLE = First step - Probit ;

CONST a0 a1 a2 a3;

PARAM b0 b1 b2 b3 b4 ;

ML (p,i) ml1 ml2 ml3 ellf2;

METHOD = nr nr nr;

MODE = step2;

TITLE = Second step - linear, MT correction ;

In example 1, a Poisson distribution is estimated. It makes it much easier

to write the log-likelihood function (eq2) in terms of a variable, m, which is

defined in eq1. The equations are estimated sequentially, so the order is

important. The variable defined in the last equation (eq2) is taken as the log-

likelihood (llfn). The display pauses (p) after each screen, and descriptive

statistics (d) are displayed. Two estimations are shown. The first evaluates

the gradient numerically, while in the second the user specifies a procedure

for evaluating the gradient.

The second example shows how a Tobit model is estimated. Note how σ is

incorporated as a parameter (sig). In this case, intermediate (i) results are

displayed, and the output pauses (p) after each screen. A user specified

title is shown.

The third example shows how a two step model is estimated In this example,

a probit is estimated in the first step using equations ml1 and ellf1, This first

step (of a two step estimation process) is characterized by specifying mode =

step1. In the second step. a linear regression is estimated using a variate

mr2 (a hazard function) derived conditional on the parameters specified in the

first step. This second step, which uses equations ml1, ml2, ml3 and ml4

is characterized by specifying mode = step2. The Murphy Topel corrected

6-221

ML

standard errors are displayed in the second estimation.

See Also FRML, NLS, TITLE, WEIGHT

References Amemiya, T. (1985), Advanced Econometrics, Harvard University Press, Cam-

bridge, Mass.

6-222

MNL Process

Purpose Creates a vector of log likelihoods for a multinomial logit process.

Format z = MNL (ycat, vmat);

Input ycat literal, vector of alternative chosen.

vmat literal, matrix of utility values for each alternative.

Output z Vector of log likelihoods.

Remarks The structural coefficients and the coefficients of the MNL process are esti-

mated using maximum likelihood. The multinomial logit model is based on

the probability function

P j =
exp(U j − Uk)∑
j exp(U j − Uk)

where P j is the probability of selecting alternative j, U j is the utility associated

with choice j, and Uk is the maximum utility over the possible choices. ycat

is a vector in which is specified the alternative chosen for each observation.

Each utility is specified in a FRML, and since utility differences are evaluated,

the first utility is set to zero as a reference. vmat is the matrix formed by

the concatenation of these utilities. The utilities can be functions of individual

characteristics, (multinomial logit), choice characteristics (conditional logit),

or a combination, and can be linear or non-linear.

See the “General Notes for Non-Linear Models” under NLS, and the discus-

sion of linear MNL under QR. An example is given in test18.prg.

Example FRML zp1 v1 = 0;

FRML zp2 v2 = g0 + g1*x1 + g2*x2;

FRML zp3 v3 = h0 + h1*x1 + g2*x3;

FRML zpmnl lllf = mnl(ycat,v1˜v2˜v3);

PARAM g0 h0 g1 g2 h1;

ML (p,i) zp1 zp2 zp3 zpmnl;

TITLE = Non-linear MNL ;

In this example, a linear mixed MNL model is estimated. x1 is a individual

characteristic, while x2 and x3 are choice based characteristics. ycat should

6-223

MNL Process

take values of 1, 2, or 3, depending on which alternative was selected for

each observation.

Source GXPROCS.SRC

See Also ML, MNP, NLS, QR

References McFadden, D. (1976), “ Conditional Logit Analysis of Qualitative Choice Be-

havior” in P. Zarembka, ed. Frontiers in Econometrics, Academic Press, New

York.

6-224

MNP Process

Purpose Creates a vector of log likelihoods for a multinomial probit process.

Format z = MNP (ycat, vmat, vcmat);

Input ycat literal, vector of alternative chosen.

vmat literal, matrix of utility values for each alternative.

vcmat
1. .5K(K − 1)x1 vector of unique elements in the differ-

enced covariance matrix.

2. KxK symmetric, positive definite covariance matrix of

the K-variate normal density function.

3. KxK Cholesky factor of the KxK covariance matrix of

the K-variate normal density function.

4. Kx(R+1) matrix for the factor analytic case, where co-

variance matrix has R factors.

mnpsc global scalar, scaling option for vcmat, such that ‖vcmat‖ = 1. This

helps precision somewhat. (Default = 1),

mnpint global scalar, integration algorithm: 1 - analytical, 2 - simulation.

(Default = 1).

MNP uses QDFN to evaluate the multivariate normal integral, and thus the

following globals are used - see QDFN for documentation.

qdfrep global scalar, the number of replications.

qdfrlz global scalar, the number of realizations.

qdford global scalar, the order of the integration

Output z Vector of log likelihoods.

Remarks The structural coefficients and the coefficients of the MNP process are esti-

mated using maximum likelihood.

ycat is a vector in which is specified the alternative chosen for each obser-

vation. Each utility is specified in a FRML, and since utility differences are

evaluated, the first utility is set to zero as a reference; vmat is the matrix

formed by the concatenation of these utilities. The utilities can be functions

of individual characteristics, (multinomial probit), choice characteristics (con-

ditional probit), or a combination, and can be linear or non-linear.

6-225

MNP Process

The MNP procedure evaluates the probability of selecting the alternative spec-

ified in ycat. For each observation, the mean value (utility) associated with

each alternative is stored in vmat. The Random Utility Model assumes that

the utilities are distributed with the specified mean, and an additive distur-

bance that is correlated across alternatives. In the MNP formulation, the dis-

tribution of these errors is multivariately normal, with a covariance matrix Σ.

For a K alternative model, there are K∗ = .5K(K−1) possible two choice com-

binations, and it can be shown that, after allowing for scaling, there can be no

more than K∗ − 1 free parameters in the covariance matrix. This covariance

matrix, vcmat, can be entered in the following formats:

1. As a K∗x1 vector of parameters, with one held as a constant. No other

restrictions are necessary.

2. As a KxK positive definite matrix, with K∗ − 1 free parameters. Rank

conditions must be satisfied.

3. As a KxK Cholesky decomposition of a PD matrix, stored as an upper

triangular matrix, with K∗ − 1 free parameters. Rank conditions must be

satisfied.

4. As a Kx(R+1) matrix of factors for the factor analytic case. Σ = D+ BB′.
The first column is a vector of variances in the diagonal matrix D, and

the remaining columns are the R factor loadings. See QDFN.SRC for a

full description. Again there should be only K∗ − 1 free parameters.

Integration of the multivariate density function is undertaken by QDFN. Exact

estimation is the default, and is acceptably rapid for low K, or for the factor

analytic case. For large K, simulation methods using the GHK algorithm are

utilized. The QDFN globals must be set before a MNP estimation.

Since the utilities are estimated as differences, a reference is needed; usually

this is achieved by setting the first utility equal to zero. Note also that iden-

tification is fragile in the MNP model without exclusion restrictions (Keane,

1992). The identification problem does not occur if the covariance matrix is

specified, or if some explanatory variables do not occur in some of the utili-

ties.

See the “General Notes for Non-Linear Models” under NLS, and the discus-

sion of linear Probit under QR. An example is given in test18.prg.

6-226

MNP Process

Example FRML zp1 v1 = 0;

FRML zp2 v2 = g0 + g1*x1 + g2*x2;

FRML zp3 v3 = h0 + h1*x1 + g2*x3;

FRML zpmnp lllf = mnp(ycat,v1˜v2˜v3,(sig1|sig2|sig3));

PARAM g0 h0 g1 g2 h1;

PARAM sig1 sig2 sig3;

VALUE = 1 1 1;

LOWERB = .0001 .0001 .0001;

CONST sig1;

ML (p,i) zp1 zp2 zp3 zpmnp;

METHOD = nr bhhh nr;

TITLE = Non-linear MNP ;

In this example, a linear mixed MNP model is estimated. x1 is a individual

characteristic, while x2 and x3 are choice based characteristics. ycat should

take values of 1, 2, or 3, depending on which alternative was selected for

each observation. Since K is 3, K∗-1 is 2, and hence only two covariance

parameters are free. In this example, the three parameters of the differenced

covariance matrix (K∗) are specified, and one held constant for scaling.

Source MNPX.SRC

See Also FMNP, ML, MNL, NLS, QR

References Greene, W.H. (1993), Econometric Analysis, 2nd ed. Macmillan, New York.

Hajivassiliou, V.A., D. McFadden, and P. Ruud. (1992), “Simulation of Multi-

variate Normal Orthant Probabilities: Methods and Programs”, Cowles Foun-

dation Discussion Paper No. 1021, Yale University, Conn.

Hausman, J.A., and D.A. Wise. (1978). “Conditional Probit Models for Qual-

itative Choice: Discrete Decisions recognizing Interdependence and Hetero-

geneous Preferences”, Econometrica, Vol. 47, pp. 403-426.

Keane, M.P. (1992), “A Note on Identification in the Multinomial Probit Model”.

Journal of Business & Economic Statistics, Vol. 10 (2), pp.193-200.

6-227

MNP Process

Maddala, G.S. (1983), Limited-dependent and Qualitative Variables in Econo-

metrics, Cambridge University Press, Cambridge.

6-228

MROOT

Purpose Returns the modulus of the largest root of a vector or matrix.

Format z = MROOT (phi);

Input phi literal, vector or matrix.

Output z scalar, modulus

Remarks The stationarity conditions for a single equation AR process, with AR coeffi-

cients, φ, the roots of the characteristic equation:

C(z) = 1 − φ1z − phi2z2 − · · · − phipzp = 0

require a modulus greater than 1, or “lie outside the unit circle”. For a VAR or

VARMA process, a similar set of conditions hold.

For an AR(1) process, this is equivalent to the requirement that |φ1| < 1.

MROOT provides an equivalent test, which can be used in both a single equa-

tion and multi equation contexts. This test returns a largest root (z) which is

less than unity if the process is stationary.

Similarly, a process with MA coefficients θ is invertible if the largest root of θ

has a modulus less than unity.

Example FRML eq1 y = arma(y, phi1|phi2, theta1|theta2);

FRML ec1 mroot(phi1|phi2) <= .9999;

FRML ec2 mroot(theta1|theta2) <= .9999;

NLS (p,i) eq1;

OPLIST = constant;

EQCON = ec1 ec2 ;

The ARMA process is estimated using constrained NLS, where the constraints

impose both stationarity and invertibility on the AR and MA coefficients re-

spectively.

Source TOOLSX.SRC

6-229

MSM Process

Purpose Creates a vector of log likelihoods for a Markov switching model.

Format z = MSM (resid, sigma, prob, phi);

Input resid literal, matrix of residuals.

sigma literal, residual standard deviation parameters.

prob literal, matrix of Markov transition parameters.

phi literal, AR parameters.

Output z Vector of log likelihoods.

_mspm Markov transition probabilities.

_msepv Ergodic probability for full state vector.

_mseps Ergodic probability for primitive states.

_msfp Filtered probabilities.

_mssp Smoothed probabilities

Remarks The MSM coefficients are estimated using maximum likelihood; thus this can

be used for linear or non-linear models. (MSM) allows a given variable to

follow different time series processes over different subsamples. The choice

of subsample is determined by a Markov process.

Assuming S states, the residual matrix resid will be an NxS matrix. The resid-

uals can be derived from a linear or non-linear structural equation. The stan-

dard deviation for each residual is parameterized in sigma - thus sigma will

be an Sx1 vector, or a scalar to restrict the same residual standard deviation

across states.

The Markov transition matrix is specified as an (S-1)xS matrix of parame-

ters - the last rows is determined residually so the probabilities sum to unity.

To ensure positivity, the actual transition probabilities are derived from the

square and norm of prob. The actual transition probabilities are available in

mspm.

Autoregressive terms are permitted - the order of the autoregressive structure

is specified in phi. A value of zero implies no AR structure.

See the “General Notes for Non-Linear Models” under NLS, and the example

under ML. An example is given in test36.prg.

6-230

MSM Process

Example FRML eq1 res1 = y - m1;

FRML eq2 res2 = y - m2 - b1*delgnp;

FRML eq3 lllf = msm(res1˜res2, sig1|sig2, p11˜p12,

phi1|phi2);

ML (p,i) eq4 eq5 eq6;

TITLE = Markov Switching Model ;

METHOD = nr bfgs nr;

In this example, a two state model is estimated with an AR(2) structure. The

first regime is simply a constant, while the second regime uses delgnp as a

predictor of y.

Source MSM.SRC

See Also ML, NLS

References Hamilton, J. D. (1994), Time Series Analysis, Princeton University press,

pp.685-689.

6-231

MVN Process

Purpose Creates a vector of concentrated log likelihoods for a multivariate normal pro-

cess.

z = MVN (resid);

Input resid literal, matrix of residuals.

Output z Vector of log likelihoods.

Remarks The structural coefficients are estimated using maximum likelihood, under

the assumption that the residuals are distributed multivariate normal. The

concentrated likelihood is used. Note that it is assumed that the expected

value of the residuals is zero.

This command permits the estimation of an equation or system of equations

using ML instead of NLS. This can be useful in a two step process.

An example is given in test47.prg.

Example FRML es1 rs1 = y1 - (a0 + a1*age + a2*educ + a3*mr2);

FRML es2 rs2 = y2 - (b0 + b1*sex + b2*mr2);

FRML ellf llf = mvn(rs1˜rs2);

ML (p,i) eq1 es1 es2 ellf;

In this example, a system of equations is estimated using ML.

Source GXPROCS.SRC

See Also FRML, ML, NLS, NORMAL

6-232

MVRND

Purpose Creates a matrix of (pseudo) correlated random variables using specified dis-

tributions.

Format s = MVRND (n, k, dist, p, rmat, rtype);

Input n scalar, number of observations.

k scalar, number of variates.

dist string or string array, distribution names.

p Kx4 or 1x4 matrix of parameters.

rmat KxK correlation matrix, or scalar correlation coefficient.

rtype scalar or character, correlation method.

Output s NxK matrix of correlated random variates.

Remarks MVRND creates a matrix of correlated variates from specified distributions

using copulas. dist is a string or string array consisting of distributions from

the STATLIB library; if only a single distribution is specified, then each variate

will be drawn from that distribution. p is a Kx4 matrix of parameters, matching

the distribution list; if p is a 1x4 vector of parameters, then this vector will be

used for each variate.

Three correlation methods are available; the method is selected by specifying

rtype:

[0 or ’p’] Pearson.

[1 or ’k’] Kendall Tau b.

[2 or ’s’] Spearman Rank

MVRND is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

dist = "normal" $| "expon" $| "gamma";

let p[3,4] = 0 1 0 0 2 0 0 0 1.5 2.5 0 0;

let rmat[3,3] = 1 .5 .2 .5 1 .6 .2 .6 1;

s = mvrnd(1000, 3, dist, p, rmat, 2);

6-233

MVRND

This example creates s, which is a 1000x3 matrix of correlated random vari-

ates consisting of the three distributions shown in dist, with the correlation

structure specified by the Spearman rank matrix rmat.

Source COPULA.SRC

See Also COPULA, CORR, STATLIB

6-234

NEGBIN Process

Purpose Creates a vector of log likelihoods for a negative binomial process.

Format z = NEGBIN (y, indx1, indx2, trunc);

Input y literal, dependent variable - number of events.

indx1 literal, index of the means - effect model.

indx2 literal, index of the variance - dispersion model.

trunc literal, truncation vector.

Output z Vector of log likelihoods.

Remarks The coefficients of the two indices are estimated using maximum likelihood;

thus this can be used for linear or non-linear models.

The negative binomial model is a generalization of the Poisson model, The

dependent variable, y is a non-negative integer specifying the number of

events. As in the Poisson model, the distribution has a conditional mean

λi, given by:

λi = exp(β′xi)

In addition, allowing for cross-section heterogeneity, the conditional variance

(the dispersion model) is given by:

σ2
i = λi(1 + exp(γ′zi))

In the default, there is no truncation, and trunc is set to 0. If truncation occurs

- for example yi is always greater than zero for the number of crimes based

on a prison inmate survey - then trunc is a two element vector consisting of

the lower and upper truncation points.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test56.prg.

6-235

NEGBIN Process

Example OLS wars age party unem;

PARAM a0 a1 a2;

VALUE = coeff;

PARAM gamma0;

FRML eq1 indx = b0 +b1*age + b2*party + b3*unem;

1. FRML eq2 llf = negbin(wars,indx,gamma0,0);

ML (p,d,i) eq1 eq2;

2. FRML eq3 llf = negbin(wars,indx,gamma0,1|15);

ML (p,d,i) eq1 eq3;

In example 1, a linear negative binomial model is estimated, using OLS start-

ing values. The RHS index is stipulated in eq1, and the log likelihood is re-

turned from eq2. Example 2 does the same analysis, but with the assumption

of a lower and upper truncation of 1 and 15 respectively.

Source GXPROCS.SRC

See Also ML, NLS, POISSON

References King, G.(1989), “Variance Specification in Event Count Models: From Restric-

tive Assumptions to a Generalized Estimator”, American Journal of Political

Science,, Vol. 33(3), pp. 762-784.

6-236

NFACTOR

Purpose Provides workspace management when required.

Format NFACTOR = size ;

Input size numeric, required, scale size (1).

Remarks In the default mode, GAUSSX maintains a workspace using RAM, and NFAC-

TOR is not used. For large data sets, or for student versions of GAUSS,

workspace management will require disk storage, and this is specified in the

GAUSSX CREATE statement.

When disk base workspace is specified GAUSSX automatically assesses the

number of observations to read into core at any time based on the needs

of the GAUSSX command currently being processed, and the available core.

For the majority of cases, no user intervention is necessary. If GAUSS reports

“Insufficient Work Space” for a particular command, it is possible for a user

to alter the default memory allocation scheme, using the NFACTOR option.

The default value for NFACTOR is unity; any value higher than this will inform

GAUSSX to read fewer number of observations into core at each read.

NFACTOR operates only for the command specified. However, if an NFAC-

TOR is given in the CREATE statement, it acts globally for all subsequent

commands; any additional NFACTOR statements act only for the command in

which they occur.

Example NLS eq1 eq2 eq3 eq4 eq5;

ENDOG = y1 y2 y3 y4 y5;

NFACTOR = 1.5;

In this example, a system of equations is estimated by NLS, under default

options. The value of NFACTOR should be increased heuristically.

See Also CREATE

6-237

NLS

Purpose Estimates the coefficients of a non-linear equation or system of equations.

Format NLS (options) elist ;

BOUND = level;

EQCON = cnstrntlist;

EQSUB = macrolist;

GENALG = genalg;

GLOBOPT = globopt;

GROUP = grouplist;

INST = instlist;

MAXIT = maxit;

MAXITW = maxitw;

MAXSQZ = maxsqz;

METHOD = methname;

MODE = modetype;

NMA = nma;

PENALTY = penalty;

POSDEF = pdname;

SIMANN = simann;

STEP = step;

TITLE = title;

TOL = tolerance;

TRUST = trust;

WEIGHT = wtname;

WINDOW = windowtype;

Input options optional, print options.

elist literal, required, equation list.

level numeric, optional, percentage confidence level.

cnstrntlist literal, optional, list of constraint equations.

genalg numeric, optional, GA options (30 4 .4 .25).

globopt numeric, optional, GO options (20000 100 .0001 4).

macrolist literal, optional, macro equation list.

grouplist literal, optional, group variable list.

instlist literal, optional, list of instruments.

maxit numeric, optional, max. number of iterations (20 1).

maxitw numeric, optional, max. covariance iterations (9999).

6-238

NLS

maxsqz numeric, optional, max. number of squeezes (10).

methname literal, optional, algorithm list (GAUSS GAUSS GAUSS).

modetype literal, optional, mode list

nma numeric, optional, list of moving average terms (0).

penalty literal, optional, penalty function (1000).

pdname literal, optional, positive definite algorithm (NG).

simann numeric, optional, SA options (5 .85 100 20).

step literal, optional, step type (LS).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001 0).

trust numeric, optional, TR options (.1 1 .001 3).

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

GRADVEC Gradient vector.

LGCOEFF Vector of Lagrangian coefficients.

LLF Log likelihood.

VCOV Parameter Covariance matrix.

COVU Residual Covariance matrix.

Remarks The NLS command estimates coefficients in single equations or systems of

equations that are non-linear in their parameters. This is achieved iteratively

by minimizing the sum of squares for the single equation, and by weighted

least squares for systems of equations. For instrumental variables, a mini-

mum distance estimator is used. For constrained optimization, this process

is augmented using sequential quadratic programming.

General

Notes

Specification The specified formulae in elist must be Type II—that is they

must be expressed in terms of coefficients defined in a PARAM state-

ment. Both the PARAM and the FRML commands must be specified

before the GMM, NLS, ML, or FIML command.

6-239

NLS

Globals The variables specified as “Outputs” are returned as global vari-

ables. LGCOEFF is only returned for constrained optimization. The esti-

mation can be repeated over groups using the GROUP option.

Print Options These include d—descriptive statistics, i—print intermedi-

ate iteration results, p—pause after each screen display, q—quiet - no

screen or printed output, and s—symbolic -diagnostic output for AD.

Sample file Since non-linear estimation techniques usually require many

passes through the data, a sample file is written containing just the

observations corresponding to the current sample, and the variables

required for the current estimation. Missing observations are listwise

deleted from this subset. This option can be turned off using the argu-

ment NOSELECT on the OPTION command. In this latter case, no sample

selection occurs (i.e. the sample is implied by the CREATE statement,

and it is the user’s responsibility to make sure that there are no missing

values.

Iterations Iteration information is specified in maxit, which can consist of

up to two elements. The first element specifies the maximum number of

iterations. The second element, if specified, determines the frequency

of the printing of the iterations.

Convergence Convergence is declared when the proportional change in

each parameter is less than tolerance the default is 0.001. If tolerance

consists of two elements, the first element represents the maximum

proportional change in each parameter for convergence, and the sec-

ond element represents the maximum proportional change in the objec-

tive function for convergence – convergence is achieved when either of

these criteria is achieved. If convergence is not achieved within maxit it-

erations, estimation is terminated, and the current parameter results are

displayed. Within each iteration, the stepsize is squeezed until there is

an improvement in the objective function; the maximum number of such

squeezes is given by maxsqz. These options can be changed at run

time while the iterations are taking place by pressing any key, and then

selecting the required option from the menu.

For non-linear estimations, convergence occurs in two iterations if a sin-

6-240

NLS

gle linear equation is being estimated. For non-linear systems, conver-

gence is not guaranteed—if this happens, try different parameter start-

ing values and/or different stepsize algorithms. The residual covariance

matrix is updated at each iteration for system estimation under NLS or

FIML. This can be controlled using the MAXITW option - as in non-linear

SURE - see example 7.

Holding parameters The non-linear estimation methods - NLS, ML, GMM,

and FIML - are used for estimating the parameters of a non-linear equa-

tion system. Given these estimated coefficients, one sometimes wishes

to estimate the regression statistics (LLF, COVU etc) on a different data

set, or a different sample, but with the same coefficients. This can be

achieved by setting up the estimation in the normal way, but setting maxit

= 0.

Gradient Finite differencing is the default method for evaluating the gradi-

ent and Hessian. Automatic differentiation can be specified for greater

accuracy and speed. See the Appendix for details.

Macros Macros can be referenced within formulae used in non-linear es-

timation; this can be useful if one has a procedure that generates a

matrix. See the discussion of macros under FRML and EQSUB. Note

that such macros make the RECURS procedure described in previous

versions of GAUSSX obsolete.

Algorithm Method The method to be used in determining the step size

algorithm can be specified by the user. This is achieved by specifying a

three element vector of names for methname, corresponding to the ini-

tial, remaining, and final iterations respectively. The available methods

are:

BFGS Broyden, Fletcher, Goldfarb and Shanno – an approximation

of the Hessian is updated each iteration.

BHHH The Berndt-Hall-Hall-Hausman algorithm; it gives exact max-

imum likelihood estimates of the standard errors, but conver-

gence is slower than GAUSS.

DFP Davidon, Fletcher and Powell – an approximation of the in-

verse Hessian is updated each iteration.

DW The Dennis-Wolkowicz conjugate method may be superior to

6-241

NLS

BFGS or DFP.

GA Genetic algorithm mimics an evolutionary process by select-

ing those chromosomes that are fittest in the optimization

context. See GENALG for details.

GAUSS The model is linearized in its variables and then estimated by

multivariate regression applied to the reduced form. It gives

exact maximum likelihood estimates, but incorrect standard

errors.

GN A cross between the GAUSS and BHHHmethods—the direction

vector is weighted by the size of the residual.

GO Global optimization is a search algorithm which attempts to

find a global optimum by a direct search over potentially op-

timal hypercubes. See GLOBOPT for details.

KILL Used in a script file to terminate an estimation. This option is

useful if one wants to exclude a “Failure to Improve” iteration

during a Monte Carlo simulation.

NM The Nelder-Meade method is a direct search algorithm using

the downhill simplex method.

NR The Newton-Raphson algorithm estimates the Hessian ma-

trix directly, while the other algorithms use an approximation.

For large problems, this can take a long time.

ROBUST Heteroscedastic-consistent method - used for the final iter-

ation only. This can take a very long time.

SA Simulated annealing is a search algorithm that attempts to

find a global optimum by moving both up and downhill during

the optimization process. See SIMANN for details.

If a “Failure to Improve” message is displayed, the user has a chance

to change the method from the keyboard. For long jobs, it is sometimes

desirable to set a script of what to do under this situation. The user can

specify additional arguments to the METHOD option. These additional

methods would them be implemented automatically – see example 6.

Step Type The step type method to be used. The available methods are:

[LS] Line Search—Search along the chosen direction using trial

steps.

6-242

NLS

QP Quadratic Programming —Search using the quadratic pro-

gramming algorithm. The QP algorithm is also used to deter-

mine step size when constraints are specified.

TR Trust Region—Search restricted to some region in the neigh-

borhood of the current iterate.

Hessian The method to be used if the Hessian is not positive definite can

be determined by the user by specifying pdname. The available meth-

ods are:

[NG] Newton-Greenstadt—Hessian forced positive definite by forc-

ing all eigen values to be positive.

M Marquardt—ridge regression method.

QR Hessian evaluated using orthogonal triangular decomposi-

tion under BHHH, rather than inverting the gradient cross prod-

ucts. Data must fit in core.

Instruments Non-linear 2SLS and 3SLS is carried out by GAUSSX using

the GMM algorithm. A list of instruments is specified using the INST

option; these instruments are used for each equation in a system. Het-

eroscedastic consistent covariances (White) can be derived using the

ROBUST option, and autocorrelated consistent covariances (Newey-West)

using the WINDOW option. See GMM for a description of estimation

methodology and robust standard errors.

Constraints Non-linear parameter constraints can be imposed under FIML,

GMM, ML and NLS. Constrained non-linear programming is undertaken

using sequential quadratic programming. The individual constraints are

specified using the EQCON option, as well as from the upper and lower

parameter bounds. The QP specification is obtained by linearizing the

nonlinear constraints. The initial parameter values must be feasible. For

each constraint, GAUSSX evaluates the value of the Lagrange multipli-

ers, and these are stored as a GAUSS vector under the name LGCOEFF.

The objective function gradient, which in the unconstrained case will be

zero, is stored under GRADVEC. The confidence region for each param-

eter is derived at the confidence level specified in the BOUND option -

typically level is set to 0.95. The reported bounds correspond to either

the individual interval estimate based on the t-statistic, or the extreme

value of the parameter which satisfies the joint (restricted) confidence

6-243

NLS

region at the specified level, whichever is the more restricted. See EQ-

CON for an example.

For non-hill climbing methods - GA, GO, NM and SA, constraints are

handled by adding a penalty function to the objective function, equal

to the product of PENALTY and the violated constraint. PENALTY can be

a scalar, or the name of a GAUSS vector with a length equal to the num-

ber of constraints. The default value is 1000.

Transfer functions These can be estimated using the NLS command. Au-

toregressive terms can be entered directly into the FRML using the LAG

command - this allows both lagged endogenous as well as lagged ex-

ogenous variables to be specified. Each equation specified has a mov-

ing average process defined by the corresponding element in nma thus

if three equations are to be estimated, then nma must have three ele-

ments. Differencing can be achieved either prior to estimation, using a

GENR statement, or in the actual FRML. Estimation of a transfer func-

tion requires that all the vectors needed for the estimation must reside

in core.

Two Step Estimation A two step process typically involves the use of a

predicted value derived from parameters derived in a first step, which

is then used as a variate in the second step; this results in biased es-

timates of the parameter standard errors. The Murphy Topel correction

at the second step takes into account that the variate is a function of the

first step parameters in order to obtain appropriate standard errors.

GAUSSX implements the Murphy Topel two step process for any two es-

timation processes using NLS and/or ML. The first step of such a two

step process is characterized by setting modetype to step1, and the

second step by setting modetype to step2. See ML for an example of a

two step process.

Weighting This is available by directly specifying a weighted model, or by

using the WEIGHT option – see the discussion under WEIGHT.

Examples of NLS are given in test02.prg. An example of a transfer function is

given in test11.prg, an example of the use of simulated annealing is given in

test21.prg, and an example of constrained estimation in test22.prg.

6-244

NLS

Example PARAM a0 a1 a2 b0 b1 b2 c0 c1 c2;

FRML eq1 y1 = a0 + a1*x1 + x2ˆa2;

FRML eq2 y2 = b0 + b1*x3 + b2*x4;

FRML eq3 y2 = a0 + b1*lag(y2,1) + b2*x4;

FRML eq4 y4 = lag(y4,1) + c2*x2 + c2*x3;

1. NLS (p,d) eq1;

2. NLS eq1 eq3;

3. NLS (p,i) eq1 eq2;

MAXIT = 40;

TOL = .0001;

METHOD = nr gauss robust;

FORCST y1fit y2fit;

4. NLS (p,i) eq3 eq4;

NMA = 1 2;

5. NLS (p) eq3 eq4;

INST = c x1 x3 z1 z2 z3;

6. NLS eq1 eq2;

METHOD = bhhh gauss bhhh nr bhhh dfp;

TOL = 0 .000001;

7. NLS eq1; NLS eq2;

NLS eq1 eq2;

MAXITW = 1;

8. FRML eq1 q = a0*lˆa1*kˆa2;

FRML cq1 a1 >= 0;

FRML cq2 a2 >= 0;

FRML cq3 a1 + a2 <= 1;

PARAM a0 a1 a2;

NLS eq1;

EQCON = cq1 cq2 cq3;

6-245

NLS

BOUND = .99;

In the first example, a single equation—eq1—is estimated using NLS. Exe-

cution pauses (p) after each screen display, and descriptive statistics (d) are

displayed.

In the second example, cross-equation coefficient restrictions are imposed by

specifying the same coefficient name in more than one equation.

Example 3 shows how a non-linear system of equations is estimated with a

maximum of 40 iterations, and convergence to be declared when the relative

proportional change for each parameter is less than .0001. The Newton-

Raphson method is stipulated for the initial iteration, followed by GAUSS for

the remainder, and the Heteroscedastic-consistent method for the final itera-

tion. Execution pauses (p) after each screen, and the values of the parame-

ters at each iteration (i) is displayed.

Example 4 shows a transfer function estimation - eq3 corresponds to an

ARIMA(1,0,1) process, and eq4 to an ARIMA(0,1,2) process, but in each case

there are additional regressors.

Example 5 demonstrates a non-linear 3SLS estimation process.

In example 6, a failure to improve situation would result in the GAUSS algo-

rithm being replaced by one iteration using NR, one iteration using BHHH, and

the remaining iterations using DFP. A subsequent failure to improve would

replicate this process. Convergence is declared when the proportional change

in the objective function is less than .000001;

Example 7 shows how a non-linear SURE estimation is carried out - the pa-

rameters are first estimated on each equations separately. Then a systems

estimation is carried out, with a covariance matrix derived from the initial pa-

rameter estimates. In a linear system, this will generate the same parameter

estimates as the SURE command.

Example 8 shows the estimation of a Cobb-Douglas production function with

6-246

NLS

additive error. The first two restrictions imply positive marginal products, while

the third requires that the production function does not exhibit increasing re-

turns to scale. The BOUND option generates a 99% confidence region for the

restricted parameters.

See Also EQCON, EQSUB, FIML, FRML, GMM, GROUP, ML, OPTION, TITLE, WEIGHT, WIN-

DOW

References Berndt, E.K., B.H. Hall, R.E. Hall and J.A. Hausman (1974), “Estimation and

Inference in Nonlinear Structural Models”, Annals of Economic and Social

Measurement, Vol. 3/4, pp. 653-665.

Broyden, C.G. (1967), “Quasi Newton Methods and their Application to Func-

tion Minimization”, Math. Comp., Vol. 21, pp. 368-381.

Davidson, R., and J.G. MacKinnon (1993). Estimation and Inference in Econo-

metrics, Oxford University Press, Oxford.

J.E.Dennis, J.E Jr. and H. Wolkowicz. (1993). Sizing and least-change se-

cant methods SIAM J. Numer. Anal. Vol. 30, pp. 1291-1314.

Fletcher, R. (1980), Practical Methods of Optimization, Wiley, New York.

Flecher, R., and M.J.D. Powell (1963), “A Rapidly Convergent Descent Method

for Minimization”, Computer Journal, Vol. 6, pp. 163-168.

Goffe, W.L., G.D. Ferrier and J. Rogers (1994), “Global Optimization of Statis-

tical Functions with Simulated Annealing”, Journal of Econometrics, Vol. 60

(1/2), pp. 65-99.

Greenstadt, J. (1967), “On the Relative Efficiencies of Gradient Methods”,

Mathematics of Computation, pp. 360-367.

Jones, D.R, C.D. Perttunen, and B.E. Stuckman (1993), “Lipschitzian Opti-

mization Without the Lipschitz Constant”, Journal of Optimization Theory and

Application, Vol 79(1), pp. 157-181.

Marquardt, D. (1963), “An Algorithm for Least-Squares Estimation of Non-

linear Parameters”, SIAM J. Appl. Math., Vol. 11, pp. 431-441.

6-247

NLS

Murphy, K. M. and R. H. Topel (1985). “Estimation and inference in two-Step

Econometric Models”. Journal of Business & Economic Statistics, Vol 3(4),

pp 370-379.

Nelder, J.A. and Mead, R. (1965). “A Simplex Method for Function Minimiza-

tion”, Computer Journal Vol 7, pp. 308-313.

Powell, M.J.D. (1983), “Variable Metric Methods for Constrained Optimiza-

tion”, Mathematical Programming: The State of the Art (A. Bachem, M.Grotschel

and B.Korte, eds.), Springer-Verlag, pp. 288-311.

White, H. (1980), “A Hetroskedasticity-consistent Covariance Matrix Estima-

tor and a Direct Test for Heteroskedasticity”, Econometrica, Vol. 48, pp. 817-

838.

Zellner, A., (1962), “An Efficient Method of Estimating Seemingly Unrelated

Regressions and Tests of Aggregation Bias”, JASA, Vol. 57, pp. 348-368.

6-248

NMV

Purpose Creates a vector with elements of unity if the argument element is not a miss-

ing value, else missing value.

Format z = NMV (x);

Input x literal, variable name.

Output z Vector, elements 1 or missing value.

Remarks The NMV command can be used within a GENR command. It creates a vari-

able z, with elements equal to unity if the corresponding element in x is not a

missing value, else the element in z is the GAUSS missing value code. This

command would typically be used in data transformation when missing val-

ues occur, since the GAUSS relational operators do not return a missing value

code when missing values are encountered. Note that GAUSSX operates with

disable on, and missing values are listwise deleted from linear and non-linear

estimations.

Example GENR y2 = ((y1 .le 3) + 2*(y1 .gt 3)).*nmv(y1);

This example, shows how GAUSSX deals with missing values - y2 is created

by the two relational operations in the usual way; however to exclude miss-

ing values the result is multiplied by nmv(y1). The net result for y2 is the

relational combination if y1 is not a missing value, else a missing value.

See Also GENR

6-249

#NOLIST

Purpose Preprocessor command to switch off the command file listing.

Format #NOLIST ;

Remarks Normally the entire GAUSSX command file listing is provided in the output

file, prior to the execution listing. The command file listing can be selectively

suppressed by using the #LIST and #NOLIST commands. #NOLIST; switches

off the listing. #LIST; switches it back on.

Example #NOLIST;

See Also #LIST, PAGE

6-250

NORMAL

Purpose Transforms a vector so that it is normally distributed.

Format NORMAL (options) varname ;

METHOD = method;

TITLE = title;

VLIST = vlist;

Input options optional, print options.

varname literal, required, output variable name.

method literal, optional, algorithm.

title string, optional, title.

vlist literal, required, input variable name.

Output COEFF coefficients.

Remarks The NORMAL command transforms a vector so that it is normally distributed.

Three algorithms are available; the algorithm is set in method:

BOXCOX BoxCox transformation.

SNV Standard normal variate (Default).

JOHNSON Johnson transformation.

In each case, the data is standardized to zero mean and unit standard devia-

tion. Under the SNV methodology, this is the only transformation undertaken.

The Boxcox transformation, (xλ−1)/λ), selects λ optimally so as to maximize

the normal probability plot correlation coefficient. This coefficient is stored in

COEFF.

The Johnson transformation optimally selects one of the three families of

distribution S: SL, SU, and SB, where L, U, and B refer to the variable being

lognormal, unbounded, and bounded respectively. The selected distribution

function is then used to transform the data to follow a normal distribution.

S L(1) z = γ + η ∗ ln(x − ε);

S U(2) z = γ + η ∗ arcsinh((x − ε)/λ;

S B(3) z = γ + η ∗ ln((x − ε)/(λ + ε − x));

6-251

NORMAL

The coefficients are stored in COEFF as a vector {S , η, γ, λ, ε}.

If the data is already normal, a warning is displayed, and the standardized

variate (METHOD=SNV) is returned. The Anderson-Darling statistic is evaluated

for the untransformed and transformed data. If a transformation cannot be

carried out, a vector of missing values is returned.

Print options include b — print brief output only, p — pause after each screen

display, and q — no screen display (quiet).

An example of NORMAL is given in test60.prg.

Example NORMAL (p) ndta;

METHOD = johnson;

VLIST = dta;

This example transforms the vector dta using the Johnson transformation to

a new vector ndta which follows a normal distribution.

6-252

NORMAL Process

Purpose Creates a vector of log likelihoods for a normal process.

Format z = NORMAL (y, indx, pvec);

Input y literal, dependent variable.

indx literal, index of the means.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The expected value of yi is parameterized as:

E(yi) = indxi.

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β and pvec, are estimated using maximum likelihood; thus

this can be used for linear or non-linear models. The scale parameter - the

standard deviation of y - must be positive. For linear models, the estimates

are equivalent to ols.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-253

NORMAL Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = normal(fail,indx,scale);

ML (p,i) eq0 eq1;

2 FRML eq2 llfn = normal(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

In example 1, a normal model is estimated using maximum likelihood, with

the index defined in eq0, and the log likelihood in eq1. Example 2 shows a

similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, MVN, NLS

6-254

NPE

Purpose Creates a vector of conditional means or density based on a nonparametric

or semiparametric estimation.

Format z = NPE (y, x, h);

Input y literal, response variable.

x literal, kernel index.

h literal or numeric, window width.

npobs global scalar, the observation number of the estimate. The esti-

mate is calculated for all observations if npobs is zero. (Default

= 0).

npcv global scalar, validation type: 0 - no cross validation, 1 - cross

validation. (Default = 0).

npmth global scalar, method: 0 - Fourier, 1 - direct. (Default = 0).

npmod global scalar, mode: 0 - conditional mean, 1 - density, 2 - discrete,

3 - smeared, 4 - frequency. (Default = 0).

npper global scalar, number of points in Fourier. (Default = 0).

npkrn global scalar, kernel: 0 - Gaussian, 1 - user defined. (Default = 0).

nppnt global scalar, print flag: 0 - do not print options, 1 - print options.

(Default = 0).

npout global scalar, output flag: 0 - vector output, 1 - matrix output. (De-

fault = 0).

Output z Vector, conditional mean or density.

Remarks NPE (Non-Parametric Estimation) is a general nonparametric or semipara-

metric procedure that can be used within a GENR— statement, or as part

of a GAUSS statement within a GAUSSX command file, or as part of a FRML

statement. NPE estimates a univariate Gaussian kernel if x is a vector, or a

multiplicative Gaussian kernel if x is a matrix. Thus the metric that is used to

weight the observations in the kernel is the Euclidean distance. The Gaus-

sian kernel for the m–variate index is given by:

Kh(xi − x∗) =
1

(2π).5m

m∏
j=1

e
−.5

(
x∗j−x ji

h

)2

6-255

NPE

where h is the window width, xi is the index for observation i, and x∗ is the

reference index. Prior to being used in the kernel, the index is scaled to have

unit variance, such that a single window width can be used. In the default,

if x is a vector, the convolution of the data with the kernel will be undertaken

using a fast Fourier transform (FFT); this is much faster than using direct

calculation. All of the data must fit in core.

The window width, h, is crucial in kernel estimations, since it determines the

amount of smoothing undertaken. If h is set to zero, h is set automatically at:

h =
(

4
n(m + 2)

)1/(4+m)

where n is the number of observations, and m is the number of columns in x.

This value for h is optimal for density estimation under certain conditions. In

general, it is better to estimate h using cross-validation (see below).

In the default, the estimates are derived for all observations in the current

sample. If y contains missing values, then these observations are not used in

the kernel.

NPE within

GENR

When used within a GENR statement, NPE will return the Nadaraya-Watson

conditional mean for the current sample. The conditional mean, is given by:

m̂(xi) =

∑n
j=1 Kh(xi − x j)y j∑n

j=1 Kh(xi − x j)

where the estimates are constructed from all the data points in the current

sample, based on the window width h. If h is set to zero, a default value is

used based on the current sample. The fast Fourier transform will be used

if x is a vector; otherwise direct calculation (which is much slower) will be

used. Program options can be set using the global variables prior to the

GENR command.

Example 1. GENR indx = a1*x1+a2*x2;

GENR yhat1 = npe(y,indx,.4)

2. GENR yhat2 = npe(y,x1˜x2,0)

6-256

NPE

In the first example, indx is first defined for the current sample. yhat1 is the

semiparametric estimate of the conditional mean of y, based on the Gaussian

kernel with argument indx for window width 0.4. NPE will automatically scale

indx to have unit variance. Since indx is a vector, the estimation will be

undertaken using the FFT.

In the second example, the same analysis is undertaken, but this time using

the multiplicative Gaussian kernel, with indices x1 and x2. The default win-

dow width is used, and since the index is a matrix, the conditional means are

estimated using the direct method.

NPE within

GAUSS

NPE can also be used in a GAUSS statement as part of a GAUSSX command

file. This is useful if one wishes to change some of the defaults, or if a num-

ber of estimates are required, based on the same index. The following two

examples give an indication of this type of use.

Example SMPL 1 100;

1. FETCH x1 x2 x3 y;

y = y|0;

x = x1˜x2˜x3;

x = x|meanc(x)’;

_npobs = 101;

yhat = npe(y,x,0);

@@ yhat : yhat;

2. FETCH y indx;

ydum = dummybr(y,1|2|3);

_npcv = 1;

_nppnt = 1;

yhat = npe(ydum,indx,h);

call makevars(yhat,0,yh1 yh2 yh3);

STORE yh1 yh2 yh3;

6-257

NPE

In the first example, the conditional mean of y is estimated at the sample

means of the index. y, x1, x2, and x3 are first fetched from the GAUSSX

workspace under the current sample. y is augmented by zero, and the matrix

x, consisting of x1 x2 x3, is augmented by the mean for each column. yhat

is the conditional mean estimated only at observation 101 - i.e. at the sample

mean. When _npobs is not zero, cross validation is used, and thus the zero

element of y does not enter into the kernel, and hence yhat is estimated

based only on the first 100 observations.

The second example shows how one would evaluate the nonparametric prob-

ability of falling in a particular categorical class, in a similar manner to the

quantile response models. An index, indx and a categorical variable (y),

which takes the values 1, 2, or 3, are fetched from the GAUSSX workspace.

ydum, a 100x3 matrix, is created containing a value of unity in column k if

yi = k. Options can be specified by setting global variables prior to the es-

timation. yhat is the predicted probability based on the leave-one-out non-

parametric estimation, using indx as the argument to the kernel. This is very

efficient, since the convolution only has to be evaluated once for each obser-

vation, rather than three times. The three variables yh1, yh2, and yh3 are

created from yhat, and stored in the GAUSSX workspace. Note that setting

_npout = 1 would have created yhat as an nx1 vector of predicted proba-

bilities for the observed category.

NPE within

FRML

NPE can be used as part of a FRML statement to allow for an estimation

of parameters, and/or window width. In the nonparametric case, the only

parameter involved is the window width h, and this can be estimated using

either least squares cross-validation (LSCV) in a regression context, or max-

imum likelihood cross-validation (MLCV) in a probability context. Similarly,

the parameters of the index can be estimated with known (or default) h in

a semiparametric context (without cross-validation), or both the index coeffi-

cients and the window width can be simultaneously estimated using LSCV or

MLCV.

The maximum likelihood CV is given by:

MLCV(h) = n−1
n∑

i=1

log f̂−i(xi)

6-258

NPE

where the leave one out density estimate f̂−i(xi) is constructed from all the

data points except xi :

f̂−i(xi) = (n − 1)−1h−1
∑
j,i

Kh(xi − x j)

The window width, h is then chosen to maximize MLCV, using the ML com-

mand.

Least squares cross-validation uses the sum of squares as the appropriate

criteria function. For density estimation, LSCV is defined as:

LSCV(h) =
n∑

i=1

(f (xi) − f̂−i(xi))2

while in a regression context LSCV is:

LSCV(h) =
n∑

i=1

(yi − m̂−i(xi))2

where the leave one out conditional mean m̂−i(xi) is defined as:

m̂−i(xi) =
∑

j,i Kh(xi − x j)y j∑
j,i Kh(xi − x j)

Again, the window width is chosen to minimize LSCV. In both cases, if a semi-

parametric approach, such as projection pursuit, is being used, then the pa-

rameters of the index (x) can be estimated concurrently with h. LSCV is most

conveniently estimated using the NLS command. The conditional expectation

in this case can be retrieved using the FORCST command subsequent to the

NLS estimation.

The program control options for both ML and for NLS are described in the

“General Notes for Non-Linear Models” under NLS. In addition, there are

some specific options available as subcommands when NPE is used within a

FRML. The format of these options is:

OPLIST = progopts ;

ORDER = weights ;

6-259

NPE

PERIODS = periods ;

KERNEL = &kernproc ;

where:

progopts literal, optional, options for NPE control.

weights numeric, optional, smear weights. (.25, .5, .25)

periods numeric, optional, #. of points in FFT.

&kernproc literal, optional, pointer to kernel procedure.

Values in parentheses are the default values. The program control options

are specified in progopts. The options available are:

[NOCV]/CV Specifies whether the estimation process is to use cross vali-

dation (leave-one-out) or not. Cross-validation is required if h is a

parameter to be estimated.

FOURIER/DIRECT Specifies whether the convolution is to be estimated us-

ing the fast Fourier transform, or direct estimation. If the index has

one column, the default is FOURIER. The number of points used

in the FFT is given by periods the default is 2m : 2m > n where

n is the sample size. If the index has more than one column, the

estimation process will used DIRECT.

[CM]/DENSITY/DISCRETE/SMEARED/FREQ Specifies the type of estima-

tion. CM returns an estimate of the Nadaraya-Watson conditional

mean of the response variable y. DENSITY ignores y and returns

the density f̂ (xi) for each point i; FREQ does the same, but without

normalization, so that the totals do not sum to unity. DISCRETE

takes a categorical variable y : y ∈ {1 . . .m}, and returns the non-

parametric probability of being in the observed category class for

each observation. SMEARED does the same as DISCRETE, but as-

sumes that the categories are ordered; the probability returned is

the “smeared” probability over the neighboring categories. The

default weighting is .25, .5, .25 centered on the observed cate-

gory; the user can alter the weighting by specifying the elements

in weights - there must be an odd number of elements.

PRINT/[NOPRINT] Specifies whether a description of the NPE options ac-

tually used should be printed out. This is useful for debugging.

6-260

NPE

Note that the program will over-ride specified options in certain

cases.

NPE uses the Gaussian kernel by default. The user can specify an alternative

kernel by specifying &kernproc this is a pointer to a procedure written by the

user, and which takes the same arguments as proc gskernel. Only the

DIRECT estimation method will be utilized in this context.

A number of examples of NPE estimation are given in test13.prg. The ker-

nel estimator of the partial derivatives (the response function) are described

under NPR (Nonparametric Regression).

Example 1. PARAM a1 a2 a3; VALUE = .2 .4 .6;

CONST a1;

PARAM h; VALUE = .5;

FRML eq1 y = npe(y,a1*x1+a2*x2+a3*x3,h);

FRML eq2 y = npe(y,x1˜x2˜x3,h);

NLS (p,i) eq1;

METHOD = bhhh bfgs bhhh;

OPLIST = cv;

PERIODS = 1024;

FORCST yhat1;

NLS (p,i) eq2;

METHOD = bhhh bfgs bhhh;

OPLIST = cv;

FORCST yhat2;

2. PARAM a1 a2 a3; VALUE = .2 .4 .6;

CONST a1;

FRML eq1 indx = a1*x1+a2*x2+a3*x3;

FRML eq2 pr = npe(y,indx,0);

FRML eq3 llfn = ln(pr.*(pr.>0) + .000001*(pr .<= 0));

ML (i) eq1 eq2 eq3;

OPLIST = discrete

Example 1 shows both a semiparametric and a nonparametric least squares

6-261

NPE

cross-validated estimation. In the first estimation, the FFT methodology is

used, evaluated at 1024 points. Note the normalization required in the semi-

parametric case (a1 = .2), since the kernel evaluates the difference in the

indices.

The second estimation uses the DIRECT methodology, since the index has

three columns. The conditional means are evaluated in the FORCST state-

ment, and stored in yhat1 and yhat2 respectively.

The second example shows how the parameters of a semiparametric estima-

tion can be evaluated when the response variable y is categorical. A default

window width is specified. The DISCRETE option ensures that pr is the semi-

parametric estimate of the probability for the observed category.

Source NPEX.SRC

See Also FORCST, FRML, GENR, ML, NLS, NPR

References Härdle W. (1990), Applied Nonparametric Regression, Cambridge University

Press, New York.

Klein, R.W., and R.H. Spady (1993), “An Efficient Semiparametric Estimator

of the Binary Response Model”. Econometrica, Vol. 61 (2), pp. 387-421.

Nadaraya, E.A. (1964), “On estimating regression”, Theory Prob. Appl., Vol.10,

pp. 186-190.

Silverman, B.W. (1982), “Algorithm AS 176. Kernel density estimation using

the fast Fourier transform”, Applied Statistics, Vol. 31, pp. 93-97.

Silverman, B.W. (1990), Density Estimation for Statistics and Data Analysis,

Chapman and Hall, London.

Watson, G.S. (1964), “Smooth regression analysis”, Sankhyā, Series A, Vol.

26, pp. 359-372.

6-262

NPR

Purpose Estimates the nonparametric regression statistics, and the response function

at the sample mean.

Format NPR (options) vlist ;

OPLIST = progopts ;

ORDER = weights;

PERIODS = periods;

REPLIC = replicopts;

TITLE = title;

WINDOW = winwidth;

Input options optional, print options.

vlist literal, required, variable list or equation name.

progopts literal, optional, options for NPR control.

weights numeric, optional, smear weights. (.25, .5, .25)

periods numeric, optional, #. of points in FFT.

replicopts numeric, optional, replication options.

title string, optional, title.

winwidth literal or numeric, optional, window width.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

RSS Residual sum of squares.

SER Standard error of the regression.

LLF Log likelihood.

Remarks The NPR command carries out nonparametric or semiparametric regression.

The normal use of NPR is to estimate the nonparametric conditional means,

and the resulting residuals. This provides the information for printing the

regression statistics. In addition, the response function, which are the partial

derivatives of the conditional mean with respect to each of the kernel indices,

are estimated at the sample mean along with their standard errors.

6-263

NPR

The kernel estimator of the conditional mean, y∗, conditional on x∗ is:

Ê(y∗|x∗) =
∑n

i=1 yi K(xi)∑n
i=1 K(xi)

where K(.) denotes the kernel based on the m variables in x. The product

Gaussian kernel is used, since its properties are well established in the lit-

erature. See the discussion under NPE for the definition of the kernel, and

the default window width. The kernel estimator of the jth partial derivatives

(response function) at the point x∗ is defined as:

β̂ j(x∗) =
∂Ê(y∗|x∗)
∂x j

=
Ê(y∗|x∗j + h/2) − Ê(y∗|x∗j − h/2)

h

When the kernel is Gaussian, β̂ j(x∗) can be evaluated analytically. These

estimates are conditional on the choice of h, as well as any coefficient val-

ues used in a semiparametric kernel. These parameters should be optimally

chosen using the NPE procedure, prior to running NPR.

The structure of the equation to be estimated is specified in the same man-

ner as in OLS, using either a variable list, or a Type I FRML command. A

constant is ignored. All observations must fit in core. Weighting is not ap-

plicable for NPR. The window width is specified in winwidth - the default size

is described under NPE. The three commands OPLIST, ORDER and PERIODS

are also described under NPE; these apply only to the estimation of the con-

ditional means. The estimation of the response function takes place using

a Gaussian kernel directly at the mean of the sample; this procedure is pro-

grammed for the conditional mean (CM), and is skipped if any other type of

estimation is specified in the OPLIST command.

The value of the response function depends on the local conditions around

the sample mean. A more robust measure can be derived using simulation

techniques. The statement

REPLIC = num nn;

will estimate the response function from a random sample of size nn drawn

with replacement from the current sample. This is repeated num times, and

the means and standard errors of both the coefficients and the coefficient

6-264

NPR

standard errors are reported. These values will be available in COEFF and

STDERR. If nn is not specified, the current sample size will be used.

Print options include p—pause after each screen display, d —print descriptive

statistics, e —print elasticities, i —print estimates at each bootstrap iteration,

b —brief summary statistics (faster) and q —quiet - no screen or printed

output.

The type of forecast that is undertaken in a FORCST command will be deter-

mined, in the default, by the type of estimation undertaken in the preceding

NPR command. These can be changed by using the nonparametric options -

see the example. Unlike the parametric case, it is necessary to include all the

past data when estimating future values of the response variable. Unknown

values of the response variable should be set to missing, since elements with

such values are excluded from the kernel.

See the “General Notes for Linear Models” under OLS, the “Remarks” under

NPE, and the examples given in test13.prg.

Example 1. NPR y x1 x2 ;

2. PARAM a1 a2 a3; VALUE = 1 .4 .6;

CONST a1;

PARAM h; VALUE = .5;

FRML eq1 y = npe(y,a1*x1+a2*x2+a3*x3,h);

NLS (p,i) eq1;

OPLIST = cv;

PERIODS = 1024;

GENR indx = a1*x1 + a2*x2+ a3*x3;

NPR (d,p) y indx;

WINDOW = h;

PERIODS = 1024;

OPLIST = print;

REPLIC = 20 60;

3. SMPL 1951 1980;

6-265

NPR

FRML eq1 y x1 x2 x2(-1);

NPR (i) eq1;

REPLIC = 100;

SMPL 1951 1990;

FORCST yhat;

OPLIST = print;

In example 1, a nonparametric regression is carried out with y as the re-

sponse variable, and c, x1 and x2 as the explanatory variables. The default

window width will be calculated. The conditional means will be estimated us-

ing the DIRECT method, with no cross-validation. Two response coefficients

will be calculated.

In the second example a semiparametric regression is undertaken. The coef-

ficients in the index, as well as the window width are estimated using the NPE

command, using cross-validation. The index indx is then generated based

on these coefficients. The NPR command uses this window width in the WIN-

DOW statement. Note both the NPE and the NPR use the FOURIER method,

with 1024 points. The regression statistics will differ however, since the NPR

estimate does not specify cross-validation. The partial derivative estimates

at the sample mean are based on a simulation of 20 draws, with each draw

using 60 observations.

The third example shows how a Type I formula can be used in an NPR com-

mand. In this case, a nonparametric regression is carried out using a default

window width, and the simulation estimate of the partial derivatives is based

on 100 draws using 40 (1951-1990) observations per draw as the default.

The values at each draw will be shown since the (i) option is specified. The

conditional mean is created by the FORCST command, with a print option.

If there are only missing values for y for 1981 to 1990, then the conditional

means for the entire sample will be based on the response variables for 1951

to 1980.

See Also FORCST, OLS, NPE, TITLE, WINDOW

References Rilstone, P., and A. Ullah (1989), “Nonparametric Estimation of Response

6-266

NPR

Coefficients”, Communications in Statistics, Vol. 18, pp. 2615-2627.

Ullah, A. and H.D. Vinod (1988), “Nonparametric Kernel Estimation of Econo-

metric Parameters”, Journal of Quantitative Economics, Vol. 4 (1), pp. 81-87.

6-267

NUMDATE

Purpose Returns the observation number for a particular date.

Format z = NUMDATE (x);

Input x literal, date.

Output z Vector, observation number.

Remarks The NUMDATE command can be used within a GENR command. It creates a

variable z, with elements numbered relative to the first date in the workspace.

The command can be used to create a trend variable when x is the vector

ID. Note that gaps in the current sample result in discontinuities in z.

Example CREATE (q) 19701 19794;

SMPL 19711 19794;

GENR trend = numdate(_ID);

This example, shows how a trend variable can be produced. In this case,

trend will take values for 19711 to 19794 of 5 through 40; the values for

19701 to 19704 will be missing.

See Also DUMMY, GENR

6-268

OLS

Purpose Estimates the coefficients in an equation using ordinary least squares.

Format OLS (options) vlist ;

METHOD = methname;

GROUP = grouplist;

PDL = pdllist;

TITLE = title;

WEIGHT = wtname;

WINDOW = windowtype;

Input options optional, print options.

vlist literal, required, variable list or equation name.

methname literal, optional, covariance method (NONE)

grouplist literal, optional, group variable list.

pdllist literal, optional, options for PDL.

title string, optional, title.

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

DF Degrees of freedom.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

LLF Log likelihood.

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

Remarks The OLS command carries out classical ordinary least squares.

6-269

OLS

General

Notes

Linear Models

The structure of the equation to be estimated can be specified either by using

a list of variables, with the dependent variable first, as in example 1 below,

or by using an equation name which has been previously specified in a Type

I FRML command. This is true for all single equation models (AR, ARCH,

KALMAN, OLS, PANEL, PLS, NPR, POISSON, QR, ROBUST, and 2SLS).

The variables described in “Outputs” are returned as global variables; they

can subsequently be used in any GAUSS or GAUSSX command. Grouped

output is available using the GROUP option. Print options include p—pause

after each screen display, d—print descriptive statistics, e—print elasticities,

i—print parameters at each iteration, q—quiet - no screen or printed output,

s—print diagnostic statistics and v—print parameter covariance matrix.

Diagnostics are included for single equations with the s option. These include

Godfrey’s test of residual serial correlation, Durbin-Watson test of positive

and negative residual serial correlation, Ramsey’s RESET test of functional

form, Jarque-Bera test of residual normality, Lagrange multiplier test for het-

eroscedasticity, and a Chi-squared test for parameter stability. For instrumen-

tal variables, Sargan’s test of misspecification is produced. Diagnostics are

not available when GROUP is specified. Additional information is available

through the on-line help (Alt-H).

Lagged variables can be used by specifying the lag in parenthesis - see ex-

ample 2. Polynomial distributed lags can be specified using the PDL option.

Elasticities (βiX̄i/Ȳi), evaluated at the sample mean, or weighted sample

mean if weighted regression, are available if the e print option is specified.

Weighted regressions are available using the WEIGHT option. Heteroscedastic-

consistent variance-covariance matrix of parameters, corrected for the de-

grees of freedom, is available by setting methname to ROBUST; the default

is NONE; the summary statistics are based on the method used. The Newey-

West procedure provides estimators whose variance has also been corrected

for autocorrelated disturbances, in addition to heteroscedasticity; both the

spectral window (weight structure) and the maximum lag length are defined

in the WINDOW command.

6-270

OLS

Example 1. OLS y c x1 x2 ;

2. OLS (d,p,s) y c x1 x2(-1);

WEIGHT = wtname;

3. FRML eq1 y c x1 x2;

OLS eq1;

METHOD = robust;

In example 1, an OLS is carried out with y as the dependent variable, and c,

x1 and x2 as the independent variables. Note that c is a vector of unity which

allows a non-zero intercept.

A similar regression is estimated in example 2, in which x2 is replaced with its

lagged value, but in this case the variables are weighted using the elements

of wtname, descriptive statistics (d) and diagnostic statistics are produced (s),

and execution pauses (p) after each screen display.

In example 3, OLS is performed on the structural equation specified in eq1,

and a heteroscedastic consistent covariance matrix is computed.

See Also FRML, PDL, TITLE, WEIGHT, WINDOW

References Chow, G.C. (1960), “Tests of equality between sets of coefficients in two linear

regressions”, Econometrica, Vol. 28, pp. 591-605.

Godfrey, L.G. (1978), “Testing against general autoregressive and moving

average error models when the regressors include lagged dependent vari-

ables”, Econometrica, Vol. 46, pp. 1293-1302.

Godfrey, L.G. (1978), “Testing for higher order serial correlation in regres-

sion equations when the regressors include e lagged dependent variables”,

Econometrica, Vol. 46, pp. 1303-1310.

Greene, W.H. (1993), Econometric Analysis, 2nd ed., Macmillan, New York.

Jarque, C.M., and A.K. Bera (1980), ”Efficient tests for normality, homoscedas-

6-271

OLS

ticity and serial independence of regression residuals”, Economic Letters,

Vol. 6, pp. 255-259.

Koenker, R. (1981), “A note on studentizing a test for heteroskedasticity”,

Journal of Econometrics, Vol. 17, pp. 107-112.

Newey, W.K., and K.D. West (1987), “A Simple Positive Semi-Definite Het-

eroskedasticity and Autocorrelation Consistent Covariance Matrix” Econo-

metrica, Vol. 55, pp. 703-708.

Ramsey, J.B. (1969), “Tests for specification errors in classical linear least

squares regression analysis”, Journal of the Royal Statistical Society B, Vol.

31, pp. 350-371.

Ramsey J.B. (1970), “Models, specification error and inference: a discussion

of some problems in econometric methodology”, Bulletin of the Oxford Insti-

tute of Economics and Statistics, Vol. 32, pp. 301-318.

White, H. (1980), “A Hetroskedasticity-consistent Covariance Matrix Estima-

tor and a Direct Test for Heteroskedasticity”, Econometrica, Vol. 48, pp. 817-

838.

6-272

OPEN

Purpose To read an external data file into GAUSSX .

Format OPEN (options) vlist ;

FNAME = filename ;

FMTLIST = fmtopts ;

RANGE = rangelist ;

OPLIST = progopts ;

Input options optional, print options.

vlist literal, optional, variable list.

filename literal, required, the name of an external file.

fmtopts literal, optional, format options.

rangelist literal, optional, spreadsheet range.

progopts literal, optional, options for program control.

Remarks The OPEN statement reads the specified file from disk using the path speci-

fied in the DATA path option in the GAUSSX desktop. Data is read into GAUSSX

starting at the first value specified in the CREATE statement, and is indepen-

dent of the current SMPL. The number of observations to be read in must be

less than the range specified in the CREATE statement, and must be of the

same type.

Spreadsheet and ASCII (delimited and packed) files are supported as de-

scribed below. GAUSSX for Windows supports a larger range of formats, and

hence it is preferable to use the data exchange facility from the GAUSSX desk-

top to create GAUSS data files from foreign files prior to running the command

file.

The following file formats are supported; the file extension tells GAUSSX which

format to use.

DAT GAUSS or GAUSSX data file

FMT GAUSS matrix file

WKS Lotus 1-2-3, revision 1-A

WK1 Lotus 1-2-3, revision 2.x

WK3 Lotus 1-2-3, revision 3.x

WK4 Lotus 1-2-3, revision 4.x

6-273

OPEN

WRK Lotus Symphony, version 1.0

XLS Excel, versions 2.0 to Excel 2003

∗ ASCII file

GAUSS/GAUSSX files If the file to be opened is a GAUSS or GAUSSX data

file, vlist need consist only of the stem; the .DAT subscript is not re-

quired. The default is to read all the variables on the file; a subset is

read if the variable list is specified. The names of the variables in the

file will be printed out if the d print option is specified, and a pause

after each screen if the p option is specified.

GAUSS matrix files The subscript .FMT must be used, and the variable

list is required.

ASCII files A filename with an extension that is not specifically given above

is treated as an ASCII file. The variable list is required, unless the first

row contains delineated headings, in which case the headings are

used to name the variables (not applicable on UNIX platforms).

@ country gnp pop @

1 1200 640

2 2100 820

For space delineated ASCII files, each column becomes a GAUSSX

vector. Packed ASCII files can also be read; these files have fixed

record length, but there are no delineators between elements. The

option FMTLIST specifies the record length, and field position, length

and floating point position for each element – see FMTLIST for addi-

tional information and examples. A GAUSS data file of the same name

and with a .DAT extension will be created, and that file will be used

for future reads as the default - see progopts below. Note that if you

have an ASCII file with a .DAT extension, the file will be overwritten by

a GAUSS file with the same name.

Spreadsheet files These are recognized by the appropriate extension. Note

that neither Lotus SQZ files nor Excel Workbooks are supported –

save the files as standard worksheets. The variable list is required.

Each column in the spreadsheet becomes a GAUSSX vector. In the

6-274

OPEN

default, the entire spreadsheet is read in; ranges however are per-

mitted - the range rangelist can either be a named range, or a set

of cell coordinates. Only numeric input is permitted. Data is read

into GAUSSX starting at the first value specified in the CREATE state-

ment, and consequently there must not be more observations than

specified in the CREATE range. The variable list is required, unless

the first row in the spreadsheet contains headings, in which case the

headings are used to name the variables. Otherwise, the number of

names declared in the OPEN statement must equal the number of

columns read in. A GAUSS data file of the same name and with a

.DAT extension will be created, and that file will be used for future

reads as the default - see progopts below.

The program control options are specified in progopts. The options available

are:

REPLACE/[NOREPL] Specifies whether an existing GAUSS data file is to

be replaced by a new file created by ATOG. Thus an ASCII to

GAUSS conversion will not take place if a GAUSS data file ex-

ists with the same prefix as the file specified in fname, unless

the REPLACE option is specified.

An example is given in test04.prg.

Example 1. OPEN; FNAME = gsxfile;

2. OPEN (d,p) x1 x2 x3; FNAME = gsxfile;

3. OPEN z1 z2 z3; FNAME = country.asc;

4. OPEN x1 x2; FNAME = gsfile.fmt;

5. OPEN x1 x2 x3;

FNAME = data.asc;

FMTLIST = record=24 position=1 width=8;

6. OPEN (p) x1 x2;

6-275

OPEN

FNAME = spread.wks;

RANGE = A1 B60;

In example 1, a GAUSS or GAUSSX data set is opened, and all the vectors

present are loaded into GAUSSX . Note that the .DAT and .DHT extensions

are not used. Both gsxfile.dta and gsxfile.dat must be in the directory

specified in the DATA path of the GAUSSX desktop.

In example 2, only vectors x1, x2 and x3 are read into GAUSSX . A listing of

the names of the variables in gsxfile is produced under the d option.

In example 3, country.asc is an ASCII file, which GAUSSX converts into the

gauss data file country.dat. In this example, both the extension (.asc) and

the vector list (z1, z2, z3) are required. If the data file contains ’@’ delineated

headers, then the vector list is not required.

Example 4 shows the same rule for GAUSS matrix files - only the first two

columns are read into x1 and x2 respectively.

In example 5, three fields are read from an ASCII file with record length of 24

(excluding final carriage return and line feed). Each field is 8 characters wide.

Example 6 shows how a range can be specified to input a certain block of

data. The p option produces a pause to allow a report on the number of cells

read.

See Also CREATE, DROP, FMTLIST, KEEP, SAVE

6-276

OPTION

Purpose Sets GAUSSX options

Format OPTION oplist ;

Input oplist literal, required, option list.

Remarks The OPTION command allows a number of GAUSSX options to be changed

during a program. Some of these options can be initially set in the GAUSSX

menu—the OPTION command overrides these initial settings. The options

are:

AD/[FD] Gradients and Hessians are evaluated symbolically /

numerically.

DEBUG/[NODEBUG] Debug facility is enabled / disabled.

EXCEL/[NOEXCEL] Excel process for import/export of .xls files.

GPLOT/[PQG] Graphic support using GAUSSPlot /Publication Qual-

ity Graphics.

GRADH = Set default perturbation value for numerical evaluated

gradients (default = 0.000001).

[GRAPH]/TEXT Graphic routines use graphic / text display.

INCORE/[NOINCORE] Data must / need-not fit in core.

MAXLAG = Set maximum lag length (default = 12).

MAXLINES = Set maximum number of lines printed per page. (de-

fault = 40).

MONO/[COLOUR] Graphic output in monochrome / colour mode.

[OUTPUT]/NOOUPUT Output to output device is turned on / off.

[OUTW80]/OUTW132 Set output width to 80 / 132 columns.

PRINT/[NOPRINT] Output file is LPT1 / defined in desktop.

[REPL]/NOREPL Default data transformation sets vector to missing value

for range outside of current sample. Under NOREPL,

data transformations do not affect vector outside of

current sample.

[SCREEN]/NOSCREEN Turns screen on / off.

[SELECT]/NOSELECT A sample file is written / not-written before estimation.

SINGLE/[DOUBLE] Files written in single / double precision.

[WARN]/NOWARN GAUSSX warnings are enabled / disabled.

6-277

OPTION

Example OPTION outw132 print noscreen maxlag=24;

In this example, all output is sent to the printer, at 132 column format, the

screen is turned off, and the maximum lag is set at 24 periods.

6-278

ORDLGT Process

Purpose Creates a vector of log likelihoods for an ordered logit model.

Format z = ORDLGT (ycat, xmat);

Input ycat literal, vector of alternative chosen.

xmat literal, matrix of utility values for each alternative.

Output z Vector of log likelihoods.

Remarks The structural and threshold coefficients are estimated using maximum likeli-

hood; thus this can be used for linear or non-linear models.

An example is given in test08.prg.

Example PARAM t0 t1 t2 t3;

VALUE = -30 1 2 30;

CONST t0 t3;

FRML eq1 xb = (t0˜t1˜t2˜t3) - (a1*x1 + a2*x2);

FRML eq2 llf = ordlgt(y,xb);

ML (p,i) eq1 eq2 ;

METHOD = bhhh bhhh nr;

This example estimates a three choice ordered logit model. Since there are

three alternatives, two threshold parameters are required (t1 and t2, as well

as the bounds at minus and plus infinity respectively.

Source GSPROCS.SRC

See Also ML, QR

6-279

ORDPRBT Process

Purpose Creates a vector of log likelihoods for an ordered probit model.

Format z = ORDPRBT (ycat, xmat);

Input ycat literal, vector of alternative chosen.

xmat literal, matrix of utility values for each alternative.

Output z Vector of log likelihoods.

Remarks The structural and threshold coefficients are estimated using maximum likeli-

hood; thus this can be used for linear or non-linear models.

An example is given in test08.prg.

Example PARAM t0 t1 t2 t3;

VALUE = -30 1 2 30;

CONST t0 t3;

FRML eq1 xb = (t0˜t1˜t2˜t3) - (a1*x1 + a2*x2);

FRML eq2 llf = ordprbt(y,xb);

ML (p,i) eq1 eq2 ;

METHOD = bhhh bhhh nr;

This example estimates a three choice ordered probit model. Since there are

three alternatives, two threshold parameters are required (t1 and t2, as well

as the bounds at minus and plus infinity respectively.

Source GSPROCS.SRC

See Also ML, QR

6-280

PAGE

Purpose To force a page break on the output file.

Format PAGE ;

Remarks This command places a form-feed symbol on the output file. It can be used

before a command to force the output from that command to be placed on a

new page when printed. This works for word processors such as Word and

Wordpad, but not for editors, such as Notepad.

This, and other page formatting controls can also be achieved by using the

GAUSS special characters (see lprint in the GAUSS manual). Note that the @@

syntax is required to turn output to ON.

Example 1. PAGE ;

2. @@ \f \e \69;

In example 1, a page break is produced. In example 2, a page break is pro-

duced (\ f), followed by an escape sequence (Escape E). Thus this capability

provides a facility for font control, spacing, etc.

See Also GAUSS, OPTION

6-281

PANEL

Purpose Estimates the coefficients of a linear regression model for panel data.

Format PANEL (options) vlist ;

IDENT = identifier;

METHOD = methname;

MODE = modetype;

TITLE = title;

WEIGHT = wtname;

Input options optional, print options.

vlist literal, required, variable list or equation name.

identifier literal, required, panel identifier name.

methname literal, optional, variance components. (SWAMY)

modetype literal, optional, modeltype. (FIXED)

title string, optional, title.

wtname literal, optional, weighting variable.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

DF Degrees of freedom.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

VCOV Parameter covariance matrix.

Remarks The PANEL command estimates the coefficients of a linear regression model

for panel data. The data can be balanced (all groups have the same number

of individuals) or unbalanced.

The structure of the equation to be estimated can be specified either by using

a list of variables, with the dependent variable first, as in example 1 below, or

by using an equation name which has been previously specified in a Type I

FRML command.

Print options include b — brief output, d — print descriptive statistics, p —

pause after each screen display, and q — quiet - no screen or printed output,

6-282

PANEL

PANEL uses the series specified in identifier to identify each individual. Thus,

for example, if there 90 observations consisting of 6 firms with 15 observa-

tions for each firm, then there needs to be a firm identifier series that takes

the same value for each firm.

CUSIP DATE x1 x2

2791 1991 2.3 4.2

2791 1992 2.5 4.4

2791 1993 3.0 4.7

...

2791 2004 4.7 5.7

2791 2005 4.8 5.5

3441 1991 1.7 2.2

3441 1992 1.9 2.4

...

In this example, the firms are identified using:

IDENT = cusip;

There are two basic frameworks used by the PANEL regression model; these

are specified in modetype:

[FE] Fixed Effects — This model adds group specific constant terms

to the regression model. This model is also known as the

LSDV (least squares dummy variable) model.

RE Random Effects — The individual specific constant is assumed

randomly distributed across cross-sectional units. This model

is also known as the Error Components model.

6-283

PANEL

There are a number of methods for estimation of the variance components in

the random effects model; these are specified in methname:

AMEMIYA Amemiyia (1971).

NERLOVE Nerlove (1971). This method is always used for unbalanced data.

[SWAMY] Swamy and Auora (1972). This is the default method.

WALLACE Wallace and Hussein (1969).

The variables described in “Outputs” are returned as global variables; they

can subsequently be used in any GAUSS or GAUSSX command.

See the “General Notes for Linear Models” under OLS, and the example given

in test58.prg.

Example 1. PANEL (p) y c x1 x2 ;

IDENT = cusip;

2. FRML eq1 cost c capital labour;

PANEL (p,d) eq1;

IDENT = firmid;

METHOD = nerlove;

MODE = re;

In example 1, a PANEL is carried out with y as the dependent variable, and

c, x1 and x2 as the independent variables. This is (by default) a fixed effects

regression; the number of intercepts equals the number of groups specified

in the cusip vector. The constant c is automatically dropped. Note that c is

a vector of unity which allows a non-zero intercept.

In example 2, a PANEL estimation is performed on the cost function specified

in eq1. This is a random effects model using the Nerlove variance compo-

nents method, with the groups specified in firmid.

See Also ANOVA, FRML, OLS, TABULATE, TITLE, WEIGHT

References Baltagi, B.H. (2001), Econometric Analysis of Panel Data. John Wiley and

sons. ltd.

6-284

PARAM

Purpose Provides a starting value for parameters specified in non-linear formulae used

by GMM, FIML, ML and NLS.

Format PARAM plist ;

LOWERB = lvalues;

ORDER = order;

RANGE = range;

SYMBOL = rootname;

UPPERB = uvalues;

VALUE = values;

Input plist literal, required, parameter list.

lvalues numeric, optional, lower bounds.

order numeric, optional, matrix order.

range numeric, optional, submatrix range.

rootname literal, optional, element name.

uvalues numeric, optional, upper bounds.

values numeric, optional, starting values.

Remarks The PARAM statement adds the variables in plist to the list of GAUSSX param-

eters, updates the value of the parameters if values is specified, and creates

global symbols for each parameter in plist, initialized at the current value. Af-

ter an estimation, the parameters will no longer be at their starting value, but

will retain the coefficient estimates of the last non-linear estimation.

Parameters must be initialized before estimating an equation in which such

parameters appear. If values is not specified, each parameter in plist is given

a default value of zero. If values is the name of a global variable, then the

elements of this vector will be used as the starting value. The number of

elements in plist and values must be the same. values can also be the name

of a vector. Thus following a linear estimation, the coefficient values are

stored in a vector called COEFF. These values can be used to set the values

for a set of parameters by setting value equal to COEFF. Note however that

the number of elements in COEFF must be the same as the number of terms

in plist.

The values specified by lvalues and uvalues are lower and upper limits which

constrain the parameter in subsequent non-linear estimation procedures. If

6-285

PARAM

an option is specified, the number of arguments must match the number of

parameters specified. These parameter constraints are imposed as a wall

during the estimation process, mainly to ensure that a parameter does not

move into a non-feasible region. A more general approach is to use con-

strained optimization - see EQCON.

A matrix of parameters can be created by specifying a single matrix name

in plist, and the rootname of the elements in SYMBOL. In this case, either

the row and column order must be specified in ORDER, or values must be

the name of a predefined matrix of the required values and order. Once a

matrix of parameters has been specified, sub-blocks can be altered using the

VALUE and RANGE options. RANGE is a four element vector specifying the

desired sub block – the initial row, initial column, final row, and final column.

The order of the matrix specified in VALUE must match the block specified in

RANGE. The sub-block specified is changed, while the remaining elements

are not altered.

Example 1. PARAM a0 ;

2. PARAM b0 b1 b2;

VALUE = .3 0 -.2;

3. PARAM co c1;

LOWERB = 0 0;

UPPERB = 10 10;

4. OLS y c x1 x2 x3;

PARAM a0 a1 a2 a3;

VALUE = coeff;

5. PARAM amat;

SYMBOL = a;

ORDER = 4 3;

FRML eq1 y = mproc(x1˜x2˜x3˜x4,amat);

NLS eq1;

avec = ones(1,3);

CONST amat;

6-286

PARAM

VALUE = avec;

RANGE = 2 1 2 3;

NLS eq1;

In example 1, a single parameter is specified. If a0 had previously been

defined as a constant, it maintains its previous value; if not, its value is set to

zero.

In the second example, starting values are specified by use of the VALUE

option.

The third example shows how lower and upper bounds can be imposed on

parameters.

In example 4, the coefficients from the previous regression are stored as a

vector (COEFF); in this case a0 will be given the value of the intercept, a1 the

coefficient on x1, etc.

Example 5 shows how a 4x3 matrix of coefficients is created (amat), with

elements ai j. In the subsequent estimation, 12 coefficients will be estimated.

After the estimation, the second row of AMAT is set to unity as a constant, and

eq1 is then re-estimated.

See Also ANALYZ, CONST, FRML

6-287

PARETO

Purpose Creates a vector of log likelihoods for a Pareto process.

Format z = PARETO (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, shape index.

pvec literal, location parameter.

Output z Vector of log likelihoods.

Remarks The Pareto distribution was historically used to describe the allocation of

wealth among individuals. The Pareto distribution has two parameters - lo-

cation and shape. However, the maximum likelihood estimate of the location

parameter is simply the minimum of y. Thus only shape is estimated. Typi-

cally, the expected value of shape (E(si)) is parameterized as:

E(si) = exp(indxi)

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index are estimated using maximum likelihood; thus

this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-288

PARETO

Example FETCH wealth;

v1 = minc(wealth);

v2 = 1/meanc(ln(wealth/v1));

x0 = v2|0;

PARAM b0 b1 ;

value = x0;

CONST loc; value = v1;

FRML eq0 shape = b0 +b1*income

1 FRML eq1 llfn = pareto(wealth,shape,loc);

ML (p,i) eq0 eq1;

eqcon = ec1;

2 FRML eq2 llfn = pareto(wealth˜censor,shape,loc);

ML (p,i) eq0 eq2;

In example 1, a Pareto model is estimated using maximum likelihood, with the

shape index defined in eq0, and the log likelihood in eq1. The location pa-

rameter is not estimated using pareto, since it is the minimum of y. Example

2 shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-289

PDF

Purpose Computes the probability density function for the specified distribution.

Format y = PDF (pdfname, x, p1, p2, p3);

Input pdfname string, the name of the probability distribution.

x NxK matrix, the argument to the specified distribution.

p1 NxK matrix or scalar, first parameter for the specified distribution.

p2 NxK matrix or scalar, second parameter for the specified distribu-

tion.

p3 NxK matrix or scalar, third parameter for the specified distribution.

Output y NxK matrix of probabilities.

Remarks This procedure returns the probability density for the specified distribution.

General

Notes

Probability Density Functions

The probability density functions, means and variances of the supported dis-

tributions are shown in the following tables. Each distribution is characterized

by parameters - p1, p2 and p3. These parameters must be conformable with

x - either the same size, or scalar. If a distribution uses only one parameter,

p2 and p3 are set to zero. If a distribution uses two parameters, then p3 is

set to zero. Note that the χ2, F, and Student’s t distributions can be specified

with a non-centrality parameter, which is defined in the same manner as the

respective GAUSS CDF functions.

The probability density function is specified in pdfname. The following are

supported:

BETA The beta pdf. takes an argument, x, which must lie in the in-

terval [0 1], and two parameters, a and b, both of which must

be positive.

BINOM The binomial pdf takes an integer, non-negative argument, x,

and two parameters, n, which is a positive integer, and p,

which must lie in the interval [0 1]. y is the probability of x
successes in n independent trials, where p is the probability

6-290

PDF

Distribution PDF

Beta f (x|a, b) = 1
B(a,b) xa−1(1 − x)b−1

Binomial f (x|n, p) =
(

n
x

)
px(1 − p)n−x

χ2 f (x|v) = 1
Γ(.5) (.5).5vx.5(v−2)e−.5x

Cauchy [πb(1 + (f racx − ab)2]−1

Exponential f (x|λ) = e−x/λ

λ

F f (x|v1, v2) = Γ(.5(v1+v2))
Γ(.5v1)Γ(.5v2)

(
v1
v2

)(v1/v2) x.5(v1−2)[
1+

(
v1
v2

)
x
].5(v1+v2)

Gamma f (x|a, b) = 1
baΓ(a) xa−1e−x/b

Geometric f (x|p) = p(1 − p)x

Gumbel (1/b)e(a−x)/bee(a−x)/b)

Hypergeometric f (x|m, k, n) =
(

n
x

) (
m − k
n − x

)
÷

(
m
n

)
Logistic sech2[(x − a)/2b]/4b

Log-Normal f (x|µ, σ2) = 1
x
√

2πσ2
e−.5(ln(x)−µ)2/σ2

Neg. Binomial f (x|s, p) =
(

x + s − 1
s − 1

)
ps(1 − p)x

Normal f (x|µ, σ2) = 1
√

2πσ2
e−.5(x−µ)2/σ2

Laplace .5 e−|x−a|/b

b

6-291

PDF

Distribution PDF

Pareto bab/xb+1

Poisson f (x|λ) = λ
x

x! e−λ

T f (x|v) = Γ(.5(v+1))
Γ(.5v)

1
√
πv

1
(1+x2/v).5(v+1)

Uniform f (x|a, b) = 1
b−a

Weibull f (x|a, b) = abxb−1e−axb

of success in any given trial.

CAUCHY The Cauchy pdf takes an unbounded argument, x, and two

parameters, p1, the median, and p2, a positive scale parame-

ter. It has no moments. It is infinitely divisible, since the mean

of n-independent Cauchy distributions is also Cauchy.

CHISQ The Chi-squared pdf takes a non-negative argument, x, and

a single parameter, v, the degree of freedom, which must

be a positive integer. A second optional positive scalar non-

centrality parameter can be specified. The sum of squares of

v observations, each independently distributed standard nor-

mal, is distributed chi-squared with v degrees of freedom.

EXP The exponential pdf takes a non-negative argument, x, and a

single parameter, λ, the mean, which must be positive. The

exponential function is used to model waiting times.

F The F pdf takes a non-negative argument, x, and two param-

eters, v1 and v2, both of which must be positive integers. A

6-292

PDF

Distribution Mean Variance

Beta a
a+b

ab
(a+b+1)(a+b)2

Binomial np np(1 − p)

Cauchy None None

χ2 v 2v

Exponential λ λ2

F v2
v2−2 [for v2 > 2] 2v2

2(v1+v2−2)
v1(v2−2)2(v2−4) [for v2 > 4]

Gamma ab ab2

Geometric (1 − p)/p (1 − p)/p2

Gumbel a + .5772b b2π2/6

Hypergeometric nk/m nk(m − k)(m − n)/m2(m − 1)

Laplace a 2b2

Logistic a (πb)2/3

Log-Normal e(µ + .5σ2) e2µ+σ2
(eσ

2
− 1)

Neg. Binomial s(1 − p)/p s(1 − p)/p2

Normal µ σ2

Pareto ab/(b − 1) a2b/((b − 1)2(b − 2))

Poisson λ λ

6-293

PDF

Distribution Mean Variance

T 0 [for v > 1] v
v−2 [for v > 2]

Uniform (a + b)/2 (b − a)2/12

Weibull a−1/bΓ(1 + b−1) a−2/b
[
Γ(1 + 2b−1) − Γ2(1 + b−1)

]
Wishart ab 2ab2

j j

third optional positive scalar non-centrality parameter can be

specified.

GAMMA The gamma pdf takes a non-negative argument, x, and two

parameters, a and b, both of which must be positive. The

gamma distribution is typically used in reliability models.

GEOM The geometric pdf takes a non-negative integer argument, x,

and a single parameter, p, which must lie in the interval [0 1].

y is the probability of x failures before a success, where p is

the probability of success in any given trial.

GUMBEL The Gumbel (or extreme value) pdf takes an argument, x, and

two parameters, p1, the mode, and p2, a positive scale pa-

rameter. The Gumbel distribution is used in the derivation of

the MNL model.

HYGEOM The hypergeometric pdf takes a non-negative integer argu-

ment, x, and three positive integer parameters, m, k, and n. If

there exist k objects of a certain type out of a total of m objects,

and n objects are drawn at random without replacement, then

y is the probability of drawing exactly x items of the specified

type.

6-294

PDF

LAPLACE The Laplace pdf takes an unbounded argument, x, and two

parameters, µ, the mean, and b, a positive scale parameter.

LOGISTIC The logistic pdf takes a positive argument, x, and two param-

eters, p1, the mean, and p2, a positive scale parameter.

LOGNORM The log-normal pdf takes a positive argument, x, and two pa-

rameters, µ and σ2, the mean and variance of the associated

normal pdf. The variance must be positive. If y is log-normal,

then ln(y) is normal. It is used for variates which can only take

positive values, such as the size of particles in an emulsion.

NEGBIN The negative binomial pdf takes an integer, non-negative ar-

gument, x, and two parameters, s, which is a non-negative

integer, and p, which must lie in the interval [0 1]. y is the

probability of x failures before the sth success, where p is the

probability of success in any given trial.

NORMAL The normal pdf takes an unbounded argument, x, and two

parameters, µ, the mean, and σ2, the variance, which must

be positive. Note that the normal density function supports

both univariate and multivariate distributions. A multivariate

distribution is recognized if p2 is square and has the order K,

where K is the column size of x. In the multivariate case, the

mean p1 can be scalar, Kx1, or NxK, and p2 must be positive

definite.

NORMALTL The left truncated normal pdf takes three parameters, µ, the

mean, σ2, the variance, which must be positive. and ν, the left

truncation point. This distribution is used in Bayesian analysis

for data augmentation, for example in a tobit model.

NORMALTR The right truncated normal pdf takes three parameters, µ, the

mean, σ2, the variance, which must be positive. and ν, the

right truncation point. This distribution is used in Bayesian

analysis for data augmentation, for example in a tobit model.

6-295

PDF

PARETO The Pareto pdf takes an argument, x (x > p1), and two pa-

rameters, p1, a positive location parameter, and p2, a positive

scale parameter.

“ttfamily “bfseries “upshape LaTeX Error: There’s no line here

to end.ΩΩSee the LaTeX manual or LaTeX Companion for

explanation.ΩType H ¡return¿ for immediate help

PEARSON The Pearson pdf takes an argument, x, and three parameters,

c0, c1, and c2. This distribution is very general, and includes

as special cases the beta, gamma, normal and t distributions.

This family is modelled assuming zero mean. The standard

normal distribution corresponds to c0 = 1, c1 = 1, and c2 = 0.

“ttfamily “bfseries “upshape LaTeX Error: There’s no line here

to end.ΩΩSee the LaTeX manual or LaTeX Companion for

explanation.ΩType H ¡return¿ for immediate help

POISSON The Poisson pdf takes a non-negative integer argument, x,

and a single positive parameter, λ, the mean. y is the prob-

ability of x events occurring within a period, where λ is the

expected number of events in that period.

T The Student’s t pdf takes an unbounded argument, x, and a

parameter, v, the degrees of freedom, which is a positive in-

teger. A second optional parameter (p2) can be specified for

the covariance matrix for a multivariate t-distribution; this ma-

trix must be square and of order K, where K is the column size

of x. A third optional positive scalar non-centrality parameter

(p3) can be specified for the univariate case. The Student’s t

distribution tends to the normal distribution as v→ ∞.

UNIFORM The uniform pdf takes an argument, x, which must lie in the

interval [a b], and two parameters, a and b, where b must be

greater than a. y has the same probability at each point in the

specified interval.

WEIBULL The Weibull pdf takes a non-negative argument, x, and two

positive parameters, a and b. The type 1 extreme value distri-

bution is derived from the Weibull distribution.

6-296

PDF

WISHART The Wishart pdf takes two parameters, n, the degrees of free-

dom, and Σ, a positive definite covariance matrix. This dis-

tribution is used in Bayesian analysis to model the posterior

distribution for Σ conditional on structural parameters θ.

PDF is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

x = seqa(0,.2,6);

a = 2; b = 4;

p = pdf(beta,x,a,b,0);

x’ = 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

p’ = 0.0000 2.0480 1.7280 0.7680 0.1280 0.0000

This computes the probability given the argument x and parameters a and b

for the beta pdf.

Source PDFX.SRC

See Also CDF, CDFI, QDFN, RND, STATLIB

References Abramowitz, M., and I. Stegun (1972), Handbook of Mathematical Functions,

Dover Publications, New York.

Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag,

New York.

Evans, M., N. Hastings and B. Peacock (1993), Statistical Distributions, 2nd

ed. John Wiley, New York.

Johnson, N.L. and S. Kotz (1970). Distributions in Statistics: Continuous

Univariate Distributions - 1. John Wiley & Sons, New York.

Press, W.H. et. al. (1986), Numerical Recipes, Cambridge University Press,

New York.

6-297

PDL

Purpose Generates a PDL (polynomial distributed lag) variable of right hand side vari-

ables for Type I equation.

Format GAUSSX COMMAND vlist;

PDL = pdllist;

Input vlist literal, required, variable list.

pdllist literal, required, options for PDL.

Remarks The PDL options are available for any non-probabilistic Type I estimation and

are specified in pdllist. For each PDL variable specification, pdllist has the

form:

vname nper plag zcon

vname is the name of the RHS variable which is to be lagged according

to the PDL specification.

nper is the number of terms in the polynomial; thus this is the degree of

the polynomial plus one.

plag is the number of lags of the variable to be included, which includes

the zero lag; thus this is the maximum lag plus one.

zcon is the end point constraint. This forces the coefficients at either

end of the lags to be set to zero. NEAR forces the first lead to zero,

FAR forces the plag lag to be zero. BOTH imposes both of these

constraints, and NONE imposes no end point constraints.

The number of coefficients estimated is equal to nper less the number of

constraints. This must be less than or equal to plag. This format must be re-

peated for each PDL variable; the estimated coefficients are called A000001,

A000002... for the first variable, B000001, B000002... for the second,

etc. The “unscrambled” coefficients are presented for each PDL variable.

If the sample period starts at the beginning of the workspace, the first plag-

1 observations are dropped. The PDL option can be used on systems of

6-298

PDL

equations, and on instrumental estimation - in each case any appearance of

the variable specified in vname is replaced with its “scrambled” form. This

applies to RHS variables and to instruments.

Example 1. OLS (p,d) y c x1 x2 x3 x4;

PDL = x1 3 3 FAR

x2 2 4 NONE;

2. FRML eq1 y1 c x1 x2 ;

FRML eq2 y2 c x1 x3 x4 ;

3SLS (p,d) eq1 eq2;

INST = c x1 x3 z1 z2 z3;

PDL = x1 2 4 NONE;

In the first example, a PDL estimation is carried out for variables x1 and x2

using OLS. x1 is specified as being a polynomial of degree two covering lags

up to and including x1t−2, with a coefficient of zero on the third lag, while x2

is specified as a polynomial of degree one with no restrictions covering lags

up to x2t−3.

The second example shows a 3SLS estimation in which the variable x1 is

specified as a polynomial of degree two with no end-point restrictions cover-

ing lags up to x2t−3. This will apply to x1 in both equations, as well as in the

list of instruments. Note that in the case of instrumental variables, care must

be taken that the number of instruments is at least as large as the maximum

number of coefficients to be estimated in each equation.

See Also AR, ARCH, LAG, OLS, SURE, VAR, 2SLS, 3SLS

References Almon, S. (1965), “The Distributed Lag between Capital Appropriations and

Expenditures”, Econometrica, Vol. 33, pp. 178-196.

6-299

PDROOT

Purpose Returns the smallest root for a set of correlation coefficients.

Format z = PDROOT (rho);

Input rho literal, required, correlation coefficient vector

Output z scalar, smallest root.

Remarks PDROOT creates the correlation matrix from the correlation coefficients rho;

this matrix is positive definite if all its characteristic roots are positive. PD-

ROOT returns the smallest root. Thus if this root is greater than zero, the

correlation matrix is positive definite.

Example FRML eq1 xb1 = a0 + a1*x1 + a2*x2;

FRML eq2 xb2 = b0 + b1*x3 + b2*x4;

FRML eq3 xb3 = c0 + c1*x1 + c2*x4;

FRML ellf3 llf = probit(y1˜y2˜y3,xb1˜xb2˜xb3,r12|r13|r23);

FRML ec1 r12ˆ2 <= .9999;

FRML ec2 r13ˆ2 <= .9999;

FRML ec3 r23ˆ2 <= .9999;

FRML ecpd pdroot(r12|r13|r23) >= .0001;

ML (p,i) eq1 eq2 eq3 ellf3;

EQCON = ec1 ec2 ec3 ecpd;

TITLE = Trivariate Probit;

This example estimates a trivariate probit model, restricting the correlation

coefficients to lie in the prescribed range.

Source TOOLSX.SRC

6-300

PEARSON

Purpose Creates a vector of log likelihoods for a Pearson process.

Format z = PEARSON (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, location index.

pvec literal, two element parameter vector (scale |shape).

Output z Vector of log likelihoods.

Remarks The Pearson distribution has been used to model data that exhibited skew-

ness - which typically includes survival data, which are often asymmetric. The

expected value of location is parameterized as:

E(yi) = (indxi)

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β, of the index are estimated using maximum likelihood; thus

this can be used for linear or non-linear models.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-301

PEARSON

Example PARAM b0 b1;

VALUE = sv;

PARAM scale shape;

VALUE = 1 1;

FRML eq0 indx = b0 + b1*x1 + b2*x2;

1 FRML eq1 llfn = pearson(wealth,indx,scale|shape);

ML (p,i) eq0 eq1;

eqcon = ec1;

2 FRML eq2 llfn = pearson(wealth˜censor,indx,scale|shape);

ML (p,i) eq0 eq2;

In example 1, a Pearson model is estimated using maximum likelihood, with

the location index defined in eq0, and the log likelihood in eq1. Example 2

shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-302

PGARCH Process

Purpose Creates a vector of log likelihoods for a power GARCH process.

Format z = PGARCH (resid, avec, bvec, gvec);

z = PGARCH T (resid, avec, bvec, gvec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for the ARCH process.

bvec literal, vector of parameters for the GARCH process.

gvec literal, γ and δ parameters.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the PGARCH process are

estimated using maximum likelihood. The PGARCH model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

ht = α0 +
∑
i=1

αi(|εt−i| − γεt−i)δ +
∑
j=1

β jht− j

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged asymmetric ε2 terms; this is the ARCH process. The β are the

weights for the lagged h terms; this is the GARCH process.

avec is a vector of parameters giving the weights for the lagged asymmetric

squared residuals. The first element, which is required, gives the constant.

gvec is a two element vector of parameters for the asymmetric process con-

sisting of γ and δ. bvec is the vector of parameters for the GARCH process.

Note the stationarity conditions described under GARCH.

6-303

PGARCH Process

See the “General Notes for GARCH” under GARCH, and the “General Notes

for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM c0 c1 c2;

VALUE = coeff;

PARAM a0 a1 a2 b1 g1 d1;

VALUE = sigsq .1 .1 0 0 2;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 a1+a2+b1 <= .999999;

FRML eq1 resid = y - (c0 + c1*x1 + c2*x2);

FRML eq2 lf = pgarch(resid,a0|a1|a2,b1,g1|d1);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5;

In this example, a linear PGARCH model is estimated using constrained max-

imum likelihood, with OLS starting values. The residuals are specified in eq1,

and the log likelihood is returned from eq2. Note the parameter restrictions

to ensure that the variance remains positive. Setting d1 as a constant to get

initial starting values facilitates estimation.

Source GARCHX.SRC

See Also GARCH, EQCON, FRML, ML, NLS

References Ding, Z., R.F. Engle, and C.W.J. Granger. (1993), “A Long Memory Property

of Stock Market Returns and a New Model”, Journal of Empirical Finance,

Vol 1 (1), pp 83-106.

6-304

PLOT

Purpose Plots one or more series against time (ID).

Format PLOT (options) vlist ;

FNAME = filename;

GROUP = grouplist;

MODE = mode;

SYMBOL = symlist;

TITLE = title;

VLIST = vname;

Input options optional, print options.

vlist literal, required, variable list.

filename literal, optional, macrofile.

grouplist literal, optional, group variable list.

mode literal, optional, graph mode (LINE).

symlist literal, optional, symbol list.

title string, optional, user defined title.

vname literal, optional, x-axis variable (ID).

Remarks The PLOT command will produce a plot of one or more series against ID.

The ID series is time if the CREATE command uses annual data, and is the

number of the observation if the CREATE command uses quarterly, monthly

or undated data. An alternative series can be specified in vname. Graphing

by groups is available using the GROUP option.

Print options include p – pause until the graphic is closed, m – display for five

seconds (PQG), h – print graph, and r – rotate graph (PQG).

See “General notes for Graphs” in GRAPH. Examples of PLOT are given in

tutor.prg and in test53.prg.

6-305

PLOT

Example 1. PLOT x1 x2;

2. OPTION PQG;

_pbox = 1;

PLOT (p) x1 x2 x3;

VLIST = x4;

TITLE = Graph 1;

3. OPTION GPLOT;

PLOT (p) x1 x2;

FNAME = test3.mcr;

4. OPTION GPLOT;

PLOT (p) x1 x2;

SYMBOL = 1 5 1 4 2 1;

In the first example, observations for x1 and x2 are plotted against time under

the current sample.

In the second example, a graphic screen is displayed using PQG in which x1,

x2, and x3 are plotted against x4, The execution pauses (p) until the graph

is closed. A box is drawn round the screen, and the user defined title is

displayed.

Examples 3 and 4 show how a graphic display is customized using GAUSS-

Plot. The first, and more powerful method is to use a macro file, as shown in

example 3. (See example 4 under GRAPH for details).

Example 4 shows how some details can be set using the SYMBOL command.

Three characteristics can be set for each variable plotted as a line or symbol

- color, shape/pattern and size. Since there are 2 variables (x1 and x2), there

will be 6 elements. In this case the lines are drawn in black and green (1 5),

as solid and dotted (1 4) and with thickness of 2 and 1.

See Also GRAPH, GROUP, OPTION, TITLE

6-306

PLS

Purpose Estimates the coefficients in an equation using partial least squares.

Format PLS (options) vlist ;

ORDER = maxfactor;

MAXIT = maxpress;

TITLE = title;

TOL = tolerance;

WEIGHT = wtname;

Input options optional, print options.

vlist literal, required, variable list or equation name.

maxfactor numeric, required, maximum number of factors.

maxpress numeric, optional, maximum number of factors for cv (20).

title string, optional, title.

tolerance numeric, optional, factor variation tolerance.

wtname literal, optional, weighting variable.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

DF Degrees of freedom.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

LLF Log likelihood.

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

Remarks The PLS command carries out partial least squares. This algorithm chooses

successive orthogonal factors from the independent variables that maximize

the covariance between each X-score and the corresponding Y-score. Typ-

ically, the first few factors exhibit a high correlation, which then decreases

from one factor to the next.

6-307

PLS

PLS is especially appropriate in the context of very many predictor variables

relative to the number of observations, and can be used for finding a few

underlying predictors that account for most of the variation in the response.

The structure of the equation to be estimated can be specified either by using

a list of variables, with the dependent variable first, as in example 1 below, or

by using an equation name which has been previously specified in a Type I

FRML command. The maximum number of factors to be used is specified in

maxfactor however the actual number used is determined when the percent-

age response variation that is explained by the current PLS component falls

below tolerance.

Print options include p — pause after each screen display, d — print descrip-

tive statistics, e — print elasticities, q — quiet - no screen or printed output,

and s — print diagnostic statistics.

The diagnostic statistic option is used to generate cross validated Predicted

REsidual Sum of Squares (PRESS) statistics. Each predicted residual is de-

rived based on a leave one out jackknife estimation. The number of PLS

factors (or components) is specified in maxpress. The number of PLS com-

ponents to be used in a model can be based on a minimum PRESS statistic,

or the number of components below which the reduction in the PRESS is in-

significant.

The variables described in “Outputs” are returned as global variables; they

can subsequently be used in any GAUSS or GAUSSX command.

See the “General Notes for Linear Models” under OLS, and the example given

in test48.prg.

Example 1 LIST xlist;

SYMBOL = x;

RANGE = 1 15;

PLS (p) y xlist ;

ORDER = 5;

2. FRML eq1 y c x1 x2 x3 x4 x5 x6 x7 x8;

PLS (p,d,s) eq1;

6-308

PLS

ORDER = 4;

TOL = 0;

MAXIT = 7;

In example 1, a PLS is carried out with y as the dependent variable, and the

fifteen x variables specified in xlist, with a maximum of five factors.

In example 2, PLS is performed on the structural equation specified in eq1.

The constant is ignored. 4 factors are used, since tolerance is specified as

zero. A table of PRESS statistics is generated (since (s) was specified as a

print option) with up to seven factors.

See Also FRML, OLS, TITLE, WEIGHT

References de Jong, S. (1993), “SIMPLS: An Alternative Approach to Partial Least Squares

Regression”, Chemometrics and Intelligent Laboratory Systems, Vol. 18, pp.

251-263.

Wold, H. (1966), “Estimation of Principal Components and Related Models by

Iterative Least Squares”, in Multivariate Analysis, ed. P. R. Krishnaiah, New

York: Academic Press, pp. 391-420.

6-309

POISSON

Purpose Estimates the coefficients of a linear model where the dependent variable is

drawn from a Poisson distribution.

Format POISSON (options) vlist ;

MAXIT = maxit;

TITLE = title;

TOL = tolerance;

VALUE = values;

WEIGHT = wtname;

Input options optional, print options.

vlist literal, required, variable list or equation name.

maxit numeric, optional, maximum number of iterations (20).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

values numeric, optional, starting value of coefficients.

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of T–statistics.

LLF Log likelihood.

VCOV Parameter covariance matrix.

Remarks The POISSON command estimates the parameters of a linear model in which

the dependent variable is drawn from a Poisson distribution, with parameter

λi, which is related to the regressors, xi. The model is:

Prob(Yi = yi) =
e−λiλ

yi
i

yi!
, yi = 0, 1, 2, ...

where λi is given by:

ln λi = β
′xi.

GAUSSX uses the current sample to estimate the Poisson process, automati-

cally dropping missing values. The dependent variable must be integer. Print

options include (p) pause, and (i) display parameters at each iteration.

6-310

POISSON

Estimation takes place using Newton’s method. Convergence is not guaran-

teed. Starting values for the structural component are estimated using OLS

in the default, but can be explicitly given using the VALUE option.

See the “General Notes for Linear Models” under OLS, and an example is

given in test09.prg. Non-linear models can be estimated using maximum

likelihood - see POISSON process.

Example FRML eq1 y c x1 x2;

1. POISSON eq1 ;

2. POISSON (p,i,d) y c x1 x2 x3;

MAXIT = 40;

VALUE = 1 .2 .1 0;

In example 1, a Poisson process is modelled based on the equation eq1;

starting values for the regression are based on OLS.

In the second example, the starting values for the independent variables (c,

x1. x2, x3) are given using the VALUE option. 40 iterations are permitted.

Descriptive statistics (d) are printed, the display pauses (p) at each screen,

and parameter values are shown at each iteration (i).

See Also FRML, NLS, OLS, POISSON, TITLE, WEIGHT

References Greene, W.H. (1993), Econometric Analysis, 2nd ed. Macmillan, New York.

6-311

POISSON Process

Purpose Creates a vector of log likelihoods for a Poisson process.

Format z = POISSON (y, indx, trunc);

Input y literal, dependent variable.

x literal, index of independent variables.

trunc literal, truncation vector.

Output z Vector of log likelihoods.

Remarks The Poisson coefficients are estimated using maximum likelihood; thus this

can be used for linear or non-linear models. trunc is a two element vector

consisting of the lower and upper truncation points, or 0 for no truncation.

For details of the Poisson model see POISSON. Also see the “General Notes

for Non-Linear Models” under NLS. An example is given in test09.prg.

Example OLS y c x1 x2;

PARAM a0 a1 a2;

VALUE = coeff;

FRML eq1 indx = a0 + a1*x1 + a2*x2;

FRML eq2 lf = poisson(y,indx,0);

ML (p,d,i) eq1 eq2;

In this example, a standard linear Poisson model is estimated, using OLS

starting values. The RHS index is stipulated in eq1, and the log likelihood is

returned from eq2.

Source GXPROCS.SRC

See Also ML, NLS, POISSON

6-312

PRIN

Purpose To compute the principal components for a given set of vectors.

Format PRIN (options) plist;

VLIST = vlist;

Input options optional, print options.

plist literal, required, principal component list.

vlist literal, required, variable list of original series.

Output _MEANS Vector of means.

_STDS Vector of standard deviations.

_FACTOR Factor matrix.

Remarks PRIN computes the principal components of the list of variables given in vlist

under the present sample, and stores them in plist. These variables are then

stored in the GAUSSX workspace. Missing values are listwise excluded.

The original series are first standardized to have zero mean and unit vari-

ance. After estimating the eigen values and vectors of the X’X matrix, the

standardized variables are post-multiplied by the factor loadings to create the

principal components. These will also be standardized, so as to have zero

mean, unit variance, and orthogonal.

The print options include d — display the characteristic roots and factor load-

ing matrix, c — print the correlation matrix for the original variables, and p —

pause after each screen display. On-line help is also available.

If the number of elements in plist is less than in vlist, the set of principal com-

ponents will explain less that 100% of the variance of the original variables. If

one of the original variables is a constant, there will be a zero characteristic

root, and one of the principal components will be a vector of zeros.

Example PRIN (p,d,c) p1 p2 p3 ;

VLIST = c gnp inv ;

In this example, three principal components are created – p1, p2, and p3 from

the series c, gnp, and inv. A correlation matrix is displayed under the (c)

6-313

PRIN

option, and the factor loadings and characteristic roots are displayed under

the (d) option. Since c is a vector of unity, one of the roots is zero, and p3 will

be a vector of zeros.

See Also DIVISIA, SAMA

References Judge, G.G. et. al. (1985), The Theory and Practice of Econometrics, John

Wiley & Sons, New York.

6-314

PRINT

Purpose Prints vectors.

Format PRINT (options) vlist ;

FMTLIST = fmtopts;

RANGE = rangelist;

Input options optional, print options.

vlist literal, required, variable list.

fmtopts literal, optional, format options.

rangelist literal, optional, range list.

Remarks The PRINT command prints out the data for the specified variables, under

the current sample. The default number of lines per page is 40; this can be

changed using MAXLINES argument in the OPTION command. A subset of the

current sample can be printed out, without creating a new sample file, using

the RANGE option. Formatting is available using the FMTLIST option.

Example SMPL 1968 1977;

1. PRINT y x1 x2;

2. PRINT (p) y x1 x2;

RANGE = 1970 1974;

3. PRINT x1 x1(-1);

In the first example, ten observations for each of the variables is printed out.

In the second, only 5 observations are printed, and execution pauses (p) after

each screen. In the third example, x1 and x1 lagged once are printed.

See Also COVA, FMTLIST

6-315

PROBIT Process

Purpose Creates a vector of log likelihoods for a multivariate binomial Probit process.

Format z = PROBIT (ymat, xmat, rvec);

Input ymat literal, matrix of alternative chosen.

xmat literal, matrix of utility values for each alternative.

rvec literal, vector, correlation coefficients.

Output z Vector of log likelihoods.

Remarks The structural and correlation coefficients are estimated using maximum like-

lihood; thus this can be used for linear or non-linear models. Models include

univariate, bivariate and trivariate probit.

An example is given in test40.prg.

Example FRML eq1 xb1 = a0 + a1*x1 + a2*x2;

FRML eq2 xb2 = b0 + b1*x3 + b2*x4;

FRML ellf llf = probit(y1˜y2,xb1˜xb2,r12);

FRML ec1 r12ˆ2 <= .9999;

ML (p,i) eq1 eq2 ellf;

METHOD = bhhh bhhh nr;

EQCON = ec1 ;

This example estimates a bivariate probit model, restricting the correlation

coefficient to lie in the prescribed range.

Source PROBITX.SRC

See Also ML, NLS, PDROOT, QR

6-316

PUTM

Purpose Saves a matrix to an ASCII or binary file.

Format ret = PUTM (filename, x, mode, append);

Input filename string, name of output file.

x NxK matrix to be written to filename.

mode scalar, file mode, (0) binary or (1) ASCII.

append scalar, file write mode, (0) overwrite or (1) append.

Output ret scalar, return code

Remarks PUTM writes a matrix to an ASCII or to a binary data file of type double.

The return code, ret, takes the following values:

0 normal return

1 null file name

2 file open error

3 file write error

4 illegal append value

PUTM is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx;

ret = putm(c:\temp\mydata.bin,x,0,0);

This example writes the matrix x as binary to c:\temp\mydata.bin. If the file

currently exists, it will be overwritten.

Source GXPROCS.SRC

See Also GETM

6-317

PV

Purpose Calculate the present value of a stream of payments.

Format y = PV (pmt, r, nper);

Input pmt Nx1 vector, or scalar, periodic payment.

r Nx1 vector, or scalar, interest rate at each period.

nper scalar, number of periods.

Output y Scalar, present value of the periodic payments.

Remarks The PV statement returns the present value of a stream of payments over

time. The payment is made at the end of each period; thus the first term of

the series is pmt[1]/(1+r). If pmt is a scalar, then the payment stream consists

of pmt at each period. If r is a scalar, then the discount rate is assumed the

same over the nper periods. If pmt and/or r are vectors, they must have

lengths of nper. Interest rate is per period; thus an annual rate of 9% paid

monthly for 20 years would haver = .09/12 = 0.0075, and n = 12 ∗ 20 = 240.

PV is pure GAUSS code, and is used independently of GAUSSX.

Example library gaussx ;

pmt = 100;

r = .1/12;

nper = 120;

pval = pv(pmt,r,nper);

pval = 7567.116

This calculates the present value of a stream of payments of $100 per month

for 10 years, with a discount rate of 10%

Source FINANCE.SRC

See Also AMORT, FV, MCALC

6-318

QDFN

Purpose Integrates the K-variate normal density function over a range of upper and

lower bounds.

Format y = QDFN (xh, xl, omega);

Input xh Kx1 or KxN matrix, the upper limits of the K-variate normal den-

sity function.

xl Kx1 or KxN matrix, the lower limits of the K-variate normal density

function.

omega KxK symmetric, positive definite covariance matrix of the K-variate

normal density function for the exact or simulation case. Kx(R+ 1)
for the factor analytic case, where the covariance matrix has R fac-

tors.

qdfmth global scalar, the choice of method

qdfmth = 0. The normal density function is evaluated using inter-

nal GAUSS functions if K ≤ 3.

qdfmth = 1. The probability is evaluated using a smooth recursive

simulator. K is unrestricted.

qdfmth = 2. The probability is evaluated using a factor analytic

method providing the covariance matrix has three or less factors.

K is unrestricted.

qdfrep global scalar, the number of replications. (20)

qdfrlz global scalar, the number of realizations. (1)

qdford global scalar, the order of the integration:

2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40. (16)

Output y Nx1 vector of the estimated integrals evaluated between the limits

given by xh and xl.

Remarks This procedure returns the probability of an K-dimensional rectangle where

the probability density function is K-dimensional normal. It can evaluate the

probability for a single set of upper and lower bounds, or can evaluate the

probability for N points, providing the covariance matrix is constant.

The evaluation in the case when K is three or less can be carried out using

Gauss functions. For K greater than 3, two methods are employed. The first

6-319

QDFN

is a factor analytic. This is only feasible if the covariance matrix has a limited

factor structure. That is, the covariance matrix (Ω) can be written as:

Ω = D + BB′

where D is a KxK diagonal matrix, and B is a KxR matrix, where R is the

number of factors. R cannot be greater than 3. For example, for the sin-

gle factor case, B will be a Kx1 vector. The factor analytic method is exact

for those cases where the covariance matrix satisfies the relationship shown

above, providing qdford is set sufficiently high – the default is 16, but higher

values may be necessary for the R = 3 case.

The second method that can be used for large K is the method of simulation.

Until recently, these methods have converged too slowly to be of sufficient

interest. Recent work has resulted in a number of simulators being proposed

that are consistent, and converge very quickly. The most promising is the

smooth recursive simulator proposed by Geweke, Hajivassiliou and Keane

(GHK). It is far slower than factor analytic for the same degree of accuracy,

but can be used for any positive definite covariance matrix. The accuracy can

be increased by increasing either qdfrep, the number of replications, and/or

qdfrlz, the number of realizations.

QDFN is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

let xh[3,2] = 1 1 2 0 3 1 ;

let xl[3,2] = 0 -2 0 -5 0 -2 ;

let b[3,2] = .3 .1 .5 -.3 .7 .6;

let d = 1 1.5 2 ;

omega = eye(3).*d + b*b’;

vmat = d˜b ;

_qdfmth = 0;

z0 = qdfn(xh,xl,omega)

_qdfmth = 1;

z1 = qdfn(xh,xl,omega)

_qdfmth = 2;

z2 = qdfn(xh,xl,vmat)

z = z0˜z1˜z2; z;

6-320

QDFN

0 -2 1 1

xl = 0 -5 xh = 2 0

0 -2 3 1

0.3 0.1 1.0

b = 0.5 -0.3 d = 1.5

0.7 0.6 2.0

1.10 0.12 0.27 1.0 0.3 0.1

omega = 0.12 1.84 0.17 vmat = 1.5 0.5 -0.3

0.27 0.17 2.85 2.0 0.7 0.6

z = 0.072139 0.071460 0.072139

0.251917 0.252609 0.251917

This integrates the two factor 3-variate normal density function over the spec-

ified range for two observations.

Source QDFN.SRC

See Also CDFN, CDFBVN, CDFTVN, CDFMVN, INTQUAD, INTQUAD2, INTQUAD3

6-321

QR

Purpose Estimate the coefficients of a linear model with a qualitative dependent vari-

able (Quantal Response), using binomial probit, multinomial logit, and or-

dered logit and probit.

Format QR (options) elist ;

CATNAME = categories;

MAXIT = maxit;

METHOD = methname;

TITLE = title;

TOL = tolerance;

WEIGHT = wtname;

Input options optional, print options.

elist literal, required, variable list or equation name.

categories literal, optional, list of category names.

maxit numeric, optional, maximum number of iterations (20).

methname literal, optional, algorithm name (LOGIT).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

wtname literal, optional, weighting variable.

Values in parentheses are the default values.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

DPDX B Vector of marginal effects.

DPDX SE Vector of std. error of marginal effects.

DPDX T Vector of t-stat. of marginal effects.

ETA B Vector of elasticities.

ETA SE Vector of std. error elasticities.

ETA T Vector of t-stat. of elasticities.

LLF Log likelihood.

VCOV Parameter covariance matrix.

MEANS Means of the independent variables.

STDS Standard deviations of the independent variables.

PERCNT Percent cases in each outcome category.

6-322

QR

Remarks GAUSSX will also recognize the commands LOGIT, PROBIT, ORDLGT, and OR-

DPRBT. This type of model requires that the dependent variable be qualita-

tive in nature, and thus takes only g consecutive values corresponding to the

g categories. A constant (c) need not be placed in the equation – GAUSSX

adds the required number of constants automatically.

The available methods are:

[LOGIT] Multinomial LOGIT.

PROBIT Binomial PROBIT.

ORDERED LOGIT Ordered LOGIT.

ORDERED PROBIT Ordered PROBIT.

In a multinomial estimation, each additional category results in a set of addi-

tional coefficients; thus if there are k explanatory variables, and g categories,

there will be (g−1)×(k+1) coefficient values. Non-linear multinomial logit can

be carried out using MNL. For an ordered logit (or probit), the coefficient val-

ues remain fixed, and only the constant changes; thus there will be k+ (g− 1)
coefficient values.

For the binomial probit, only two categories can be specified. Multinomial

probit and non-linear probit can be carried out using MNP.

The coefficients in the LOGIT and PROBIT estimation procedures are defined

so that their sign conforms to the “industry standard” - a positive coefficient

implies a higher propensity to be in the selected group. The reference cate-

gory is set for the first category.

The marginal effect – ∂P/∂X – and their associated standard errors and t-

statistics are also reported for all QR models, evaluated at the sample mean.

These are stored as globals under the names DPDX B, DPDX SE, and DPDX T

respectively. Alternatively, elasticities are also available; these are stored as

globals under the names ETA B, ETA SE, and ETA T respectively.

Print options include p—pause after each screen display, d — print descrip-

tive statistics, e — print elasticities, i — print parameters at each iteration, m

— print marginal effects, and q — quiet - no screen or printed output.

6-323

QR

A sample file containing just the cases and variables relevant for the cur-

rent estimation is created prior to the estimation. Missing values are listwise

deleted from this subset of variables. See “General notes for Non-Linear Es-

timations” for details.

The FORCST command works as expected; for example, if example 2 had

just been estimated, then the statement:

FORCST prblue prcraft prwhite prprof;

will generate four variables corresponding to the predicted probability of a

case occurring in each category. Note that the number of arguments in

FORCST equals the number of categories. The FORCST command can also

be used to compute Mill’s ratio after a PROBIT or LOGIT estimation. The

LOGIT Mill’s ratio is defined using the Trost and Lee (1984) methodology.

Thus a polychotomous choice model can be estimated using LOGIT, and

OLS applied to each category, correcting for selectivity. The number of Mills

variables must equal the number of categories – see example 5 below and

test08.prg. Sample selection models can also be run using the HECKIT com-

mand.

See the “General Notes for Linear Models” under OLS, and the examples

given in test08.prg.

Example FRML eq1 y x1 x2 x3;

1. QR y1 x1 x2 x3;

METHOD = probit;

CATNAME = Blue White;

2. QR (d,p) eq1;

METHOD = logit;

CATNAME = Blue Craft White Prof;

3. QR eq1;

METHOD = ordered logit;

MAXIT = 10;

6-324

QR

4. QR (i,p) y x1 x2 x3;

METHOD = ordered probit;

CATNAME = Blue Craft White Prof;

5. PROBIT eq1;

FORCST mr;

MODE = mills;

SMPL y;

OLS wage c z1 z2 z3 mr;

METHOD = robust;

In the first example, a binomial probit is estimated - y1 takes one of two values

(eg zero or unity); the explanatory variables are x1, x2 and x3. The user can

specify names for each category by using the CATNAME option.

In example 2, a multinomial logit is estimated on four categories; in this case

the equation is specified as the name of a previously defined FRML. Descrip-

tive statistics (d) are produced, and execution pauses (p) after each screen

display. The dependant variable (y) would take the value 1, 2, 3, or 4.

Example 3 repeats the previous example, but uses an ordered logit, as op-

posed to a multinomial logit. A maximum of 10 iterations is specified.

In example 4, an ordered probit is carried out on four categories. The iteration

(i) option generates detailed information for each iteration, and pauses (p)

after each display,

Equation 5 shows how a two stage Heckman procedure for correcting se-

lection bias can be carried out. A wage equation is to be estimated, but only

employed persons (y = 1) have a wage. Estimate a probit on the entire sam-

ple, and generate Mills ratio mr. Then on the sample of working individuals,

carry out an OLS including mr as an explanatory variable (and correcting for

heteroscedasticity by using ROBUST).

See Also FRML, HECKIT, MNL, MNP, OLS, TITLE, WEIGHT

6-325

QR

References Amemiya, T. (1981), “Qualitative Response Models: A Survey”, Journal of

Economic Literature, Vol. 19, pp. 1483-1536.

Bera, A.K., C.M. Jarque, and L.F. Lee. (1984). “Testing the normality assump-

tions in limited dependent variable models”, International Economic Review,

Vol. 25(3), pp 563-578.

Maddala, G.S. (1983), Limited-dependent and Qualitative Variables in Econo-

metrics, Cambridge University Press, Cambridge.

Trost, R.P., and L.F. Lee (1984), “Technical Training and Earnings: A Poly-

chotomous Choice Model with Selectivity”, Review of Economics and Statis-

tics, Vol. 66(1), pp. 151-156.

6-326

RENAME

Purpose To change the name of a GAUSSX variable.

Format RENAME oldname newname ;

Input oldname literal, required, existing variable name.

newname literal, required, new variable name.

Remarks The RENAME statement is much faster than a GENR followed by a DROP,

since only the header of the GAUSSX data file is changed. RENAME is not

applicable on UNIX platforms.

Example RENAME gnp newgnp;

The variable gnp is renamed newgnp.

See Also DROP, KEEP, STORE

6-327

RND

Purpose Creates a matrix of (pseudo) random variables derived from the specified

distribution.

Format y = RND (pdfname, r, c, p1, p2, p3);

pdfname string, the name of the probability distribution.

r scalar, the row dimension.

c scalar, the column dimension.

p1 RxC matrix or scalar, first parameter for the specified distribution.

p2 RxC matrix or scalar, second parameter for the specified distribu-

tion.

p3 RxC matrix or scalar, third parameter for the specified

Output y RxC matrix of random variates.

Remarks This procedure returns pseudo random variates from the specified distribu-

tion.

See the “General Notes for Probability Density Functions” under PDF.

RND is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

a = 2; ;

y = rnd(poisson,2,3,a,0,0);

y = 1.0000 4.0000 2.0000

3.0000 1.0000 2.0000

This generates a random sample of 6 observations from a Poisson distribu-

tion with λ = 2.

Source PDFX.SRC

See Also CDF, CDFI, PDF, RND, RNDGEN, RNDTN

6-328

RNDGEN

Purpose Creates a matrix of (pseudo) random variables derived from a specified cu-

mulative distribution function.

Format y = RNDGEN (&cdf, r, c, dta, pvec, cns);

&cdf pointer to a function cdf(x,dta,pvec), defined as a procedure.

r scalar, the row dimension.

c scalar, the column dimension.

dta optional data matrix used by the cdf procedure, or zero.

pvec kx1 parameter vector used by the cdf procedure

cns scalar, argument constraints.

Output y rxc matrix of random variates.

Remarks This procedure returns pseudo random variates for the specified distribution.

The cumulative distribution function for the required distribution is specified

as cdf(x, dta, pvec), where x is the argument, dta is an optional data matrix,

and pvec is an optional parameter vector. If each row of dta is to be used for

each invocation, then dta must have r rows.

The permitted range of the argument is specified as a scalar in cns. The

available values are:

0 −∞ < x < ∞.

1 x ≥ 0.

2 x ≤ 0.

3 0 ≤ x ≤ 1.

RNDGEN uses Newton’s method, and so convergence is not guaranteed. If

convergence fails, a missing value is returned.

RNDGEN is pure GAUSS code, and can be used independently of GAUSSX.

6-329

RNDGEN

Example library gaussx ;

proc beta_cdf(x,dta,pvec);

local v1, v2, xx, cdf;

v1=pvec[1];

v2=pvec[2];

cdf = cdfbeta(x,v1,v2);

retp(cdf);

endp;

pvec = { .3, .5 };

cns = 3;

y = rndgen(\&beta_cdf,100,1,0,pvec,cns);

This generates a random sample of 100 observations from a beta distribution

with shape parameters .3 and .5. Since the argument for a beta variate lies

in the range {0:1}, cns is specified as 3.

Source GXPROCS.SRC

See Also RND

6-330

RNDQRS

Purpose Creates a matrix of quasi random variables.

Format y = RNDQRS (n, k);

Input n Row dimension.

k Column dimension (max 6).

Output y NxK matrix of quasi random sequence.

Remarks The Sobol sequence generator generates quasi random sequences of num-

bers up to 6 dimensions. Such sequences fill a space more uniformly than

uncorrelated random sequences - in a sense they are maximally avoiding of

each other. (Press et. al. (1993), p. 300).

RNDQRS is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

y = rndqrs(1000,4);

This example generates a 1000 by 4 matrix y of quasi random sequences.

Source BITWISE.SRC

See Also RND, RNDSMPL

References Press, W.H. et. al. (1993), Numerical Recipes, Cambridge University Press,

New York.

6-331

RNDSMPL

Purpose Random sampling from a population with or without replacement.

Format y = RNDSMPL (m, n, c);

Input m Number of elements required in sample.

n Number of elements in population.

c Flag - No replacement if c = 0, replacement if c = 1.

Output y mx1 vector of integers between 1 and n.

Remarks If the flag c is set to zero, y will consist of unique numbers between 1 and n;

consequently, m <= n. If c is set to unity, replacements are permitted. The

output y can then be used as an index for the sample.

RNDSMPL is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx ;

y = rndsmpl(50,100,0);

This example generates a 50 element vector y of integers between 1 and

100, with no replacements.

Source GXPROCS.SRC

6-332

RNDTN

Purpose Creates a matrix of (pseudo) random variables distributed truncated multi-

variate normal.

Format y = RNDTN (xh, xl, mu, omega);

Input xh Kx1 or KxN matrix, the upper limits of the K-variate normal den-

sity function.

xl Kx1 or KxN matrix, the lower limits of the K-variate normal density

function.

mu Kx1 or KxN matrix, means of the K-variate normal density func-

tion.

omega KxK symmetric, positive definite covariance matrix

of the K-variate normal density function.

rtnrep global scalar, the number of Gibbs replications (default = 20).

rtnpnt global scalar, 1 - print iteration number (default = 0).

Output y 1xK vector or NxK matrix of random numbers derived from the

multivariate normal density function between the limits given by xh

and xl.

Remarks The truncated multivariate normal number generator is based upon the uni-

form number generator, and uses the same seed. The methodology uses

the Gibbs Sampler, which is based on a Markov chain that utilizes univari-

ate truncated normal densities to construct conditional variates, and has the

truncated multivariate normal as its limiting distribution.

RNDTN is pure GAUSS code, and can be used independently of GAUSSX.

6-333

RNDTN

Example library gaussx ;

let xh = 2 1;

let xl = 0 -1;

let omega[2,2] = 1 .8 .8 1;

let mu[2,5] = 3 3 3 0 0

0 0 0 0 0;

y = rndtn(xh,xl,mu,omega);

xh = 2 xl = 0 mu = 3 3 3 0 0

1 -1 0 0 0 0 0

omega = 1.0 0.8

0.8 1.0

y = 1.7296491 0.02386495

1.9555895 0.14874314

1.9291931 -0.42081598

0.79121303 0.56267756

0.34698671 -0.51624094

This simulates the bivariate truncated normal density function over the spec-

ified delineation range for five observations with specified means.

Source RNDTN.SRC

See Also RND, RNDN, RNDU

References Hajivassiliou, V. (1992), “Simulation Estimation Methods for Limited Depen-

dent Variable Models” in Handbook of Statistics, Vol. 11 (Econometrics), G.S.

Maddala, C.R. Rao, and H.D. Vinod (eds.). Amsterdam: North Holland.

6-334

ROBUST

Purpose Estimates the coefficients of a linear equation using robust estimation.

Format ROBUST (options) vlist ;

MAXIT = maxit;

METHOD = methname;

PDL = pdllist;

REPLIC = replic;

TITLE = title;

TOL = tolerance;

VALUE = value;

Input options optional, print options.

vlist literal, required, variable list or equation name.

maxit numeric, optional, max. number of iterations (20).

methname literal, optional, estimation method (LAD)

pdllist literal, optional, options for PDL.

replic numeric, optional, replication options.

title string, optional, title.

value numeric, required, estimation parameter.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

DF Degrees of freedom.

RSS Residual sum of squares.

SER Standard error of the regression.

SAR Sum of absolute residuals.

LLF Log likelihood.

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

6-335

ROBUST

Remarks The ROBUST command carries out robust estimation of linear equation mod-

els. A number of different estimation methods are available; in each case,

the objective function depends on the absolute value of the residuals. This

type of regression will generally be used when the disturbance distribution is

unknown; in these circumstances, ROBUST provides better estimates of the

underlying parameters than OLS, especially when the residuals have fat tails

(leptokurtic).

GAUSSX provides six robust estimation methods to evaluate β in the linear

equation model:

yt − x′tβ + εt

Quantile Regression is an L-estimator; it is carried out using the interior point

algorithm of Park and Koenker. β is obtained from the solution of:

min
β

 ∑
{t | yt≥x′tβ}

ρ
∣∣∣yt − x′tβ

∣∣∣ + ∑
{t | yt≤x′tβ}

(1 − ρ)
∣∣∣yt − x′tβ

∣∣∣
When ρ = .5, quantile regression is equivalent to LAD.

The other five methods are M-estimators, and are evaluated using iterated

re-weighted least squares, with weights Wt:

Least Absolute Deviation:

Wt =

 1∣∣∣yt − x′tβ
∣∣∣


Huber’s t Function:

Wt = 1 + sup
|yt−x′tβ|>ρ

 ρ∣∣∣yt − x′tβ
∣∣∣ − 1


Ramsay’s E Function:

Wt = exp(−ρ
∣∣∣yt − x′tβ

∣∣∣)
Andrew’s Wave Function:

Wt = sup
|yt−x′tβ|<πρ

(
sin

[
(yt − x′tβ)/ρ

]
(yt − x′tβ)/ρ

)

6-336

ROBUST

Tukey’s Biweight:

Wt = sup
|yt−x′tβ|<ρ

(
1 − [(yt − x′tβ)/ρ]

2
)2

Specification The structure of the equation to be estimated can be speci-

fied either by using a list of variables, with the dependent variable first,

as in example 1 below, or by using an equation name which has been

previously specified in a Type I FRML command.

Estimation Method The estimation method used is specified in methname.

The available methods are:

QR Quantile Regression.

LAD Least Absolute Deviation.

HUBER Huber’s t Function.

RAMSAY Ramsay’s E Function.

ANDREW Andrew’s Wave Function

TUKEY Tukey’s Biweight Function

The parameter, ρ, is specified in value.

Convergence Both the interior point algorithm and the iterated reweighted

least squares involve iterations until convergence. Convergence is de-

clared when the proportional change in each parameter is less than

tolerance the default is 0.001. If tolerance consists of two elements, the

first element represents the maximum proportional change in each pa-

rameter for convergence, and the second element represents the max-

imum proportional change in the objective function for convergence –

convergence is achieved when either of these criteria is achieved. If

convergence is not achieved within maxit iterations, estimation is termi-

nated, and the current parameter results are displayed.

Lags Lagged variables can be used by specifying the lag in parenthesis -

see example 2. Polynomial distributed lags can be specified using the

PDL option.

Inference In most cases, the distribution of the residuals in the estimation

equation is unknown - indeed, this is why one is using a robust estimate.

6-337

ROBUST

Consequently, the distribution of the coefficient estimates is unknown.

An estimate of the parameter covariance matrix can be derived using

bootstrapping. The bootstrap procedure is controlled by replic:

REPLIC = num nsize npnt;

where num is the number of bootstrap replications on the data that has

been drawn nsize times, with replacement, from the current sample.

The iteration count is printed out every npnt iterations. The default (and

recommended) value for nsize is the current sample size.

The mean bootstrap coefficient values and the 95% percentile band are

displayed, and the parameter covariance matrix is derived from the boot-

strap data. A bootstrap is not carried out if REPLIC is not specified, and

the covariance matrix is set to missing.

Regression Statistics The regression statistics for ROBUST are derived us-

ing standard formulae, except that standard errors and t-stats are de-

rived from the bootstrap estimate of the parameter covariance matrix,

and the log likelihood is evaluated assuming that the residuals are dis-

tributed with a Laplace distribution. Measures of fit are not constrained

in the same way as in OLS; thus, for example, R-squared can easily be

negative.

Print Options These include p — pause after each screen display, b —

brief output, d — print descriptive statistics, i — print parameters at

each iteration, q — quiet - no screen or printed output, and s — print

diagnostic statistics.

An example of ROBUST is given in test32.prg.

Example 1. ROBUST y c x1 x2 ;

2. ROBUST (d,p,s) y c x1 x2(-1);

METHOD = qr;

REPLIC = 100;

VALUE = .25;

3. FRML eq1 y c x1 x2;

ROBUST (d, i, p, s) eq1;

6-338

ROBUST

METHOD = huber;

REPLIC = 100;

VALUE = .4;

PDL = x1 2 4 none;

MAXIT = 100;

In example 1, a ROBUST estimation is carried out with y as the dependent

variable, and c, x1 and x2 as the independent variables. The LAD method is

used as the default, and no bootstrap is carried out.

In example 2, a quantile regression is estimated (with ρ = .25), with the same

variables as in example 1, but with x2 replaced with its lagged value. The pa-

rameter covariance matrix is estimated based on 100 bootstrap replications.

In this case descriptive statistics (d) and diagnostic statistics are produced

(s), and execution pauses (p) after each screen display.

In example 3, a robust estimation using Huber’s t function with ρ = .4 is per-

formed on the structural equation specified in eq1, but with a PDL estimation

occurring for x1.

See Also FRML, OLS, PDL

References Judge, G.R., et. al (1988), Introduction to the Theory and Practice of Econo-

metrics, 2nd ed., John Wiley, New York.

Koenker, R.W. and G.W. Bassett (1978), “Regression Quantiles”, Economet-

rica, Vol 46, pp. 33-50.

Portnoy, S., and R. Koenker (1997), “The Gaussian Hare and the Laplacean

Tortoise: Computability of Squared-error vs. Absolute Error”, Statistical Sci-

ence, Vol. 12.

Staudte, R.G. and S.J. Sheather (1990), Robust Estimation and Testing, John

Wiley, New York.

6-339

RSM

Purpose Estimates the optimum factors for a response surface problem.

Format RSM (options) elist;

EQCON = cnstrntlist;

EQSUB = macrolist;

GENALG = genalg;

GLOBOPT = globopt;

MAXIT = maxit;

MAXSQZ = maxsqz;

METHOD = methname;

MODE = metric;

POSDEF = pdname;

SIMANN = simann;

TITLE = title;

TOL = tolerance;

USERPROC = &userproc;

VALUE = value;

VLIST = matname;

Input options optional, print options.

elist literal, required, equation list.

cnstrntlist literal, optional, list of constraint equations.

macrolist literal, optional, macro equation list.

genalg numeric, optional, GA options (30,4 .4 .25).

globopt numeric, optional, GO options (20000 100 .0001 4).

maxit numeric, optional, maximum number of iterations (20).

maxsqz numeric, optional, maximum number of squeezes (10).

methname literal, optional, algorithm list (BFGS GA NR).

metric literal, optional, desirability algorithm or metric (DS).

pdname literal, optional, positive definite algorithm (NG).

simann numeric, optional, SA options (5 .85 100 20).

title string, optional, title.

tolerance numeric, optional, param. convergence tolerance (.001).

&userproc literal, optional, pointer to user specified desirability proce-

dure.

value literal, optional, metric parameter or matrix.

matname literal, required, response parameter bound matrix.

Values in parentheses are the default values.

6-340

RSM

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

LLF Model criteria.

VCOV Parameter covariance matrix.

_RSMRSPN Vector of responses.

_RSMDSR Vector of desirabilities

Remarks RSM is a methodology that is used extensively in engineering to solve an op-

timization problem using simulation. In the first step, an experimental design

is used to fit a set of observed responses (r) to a set of factors; typically this

can be modelled by NLS using a non-linear model, or by OLS or SURE on a

polynomial expansion of the factors (see XPAND). A desirability measure or

distance metric (generalized distance) is specified as a function of the (fitted)

responses, and in the second step the optimal factor choice that maximizes

the desirability measure (or minimizes the distance metric) is determined by

optimization. Upper (ru), lower (rl) and target (rt) values of the responses may

be specified, conditional on the metric chosen. Since the response surface

is not smooth, and typically has many local optima, the genetic algorithm is

used as the default.

The RSM command estimates the parameters of a model via the maximum

likelihood method - in effect, the desirability is used instead of the likelihood.

The user specifies FRMLs which compute the response variables given a set

of factors. For each iteration, the computed response variables are then used

as an argument to the metric specified in mode (or &userproc). The form is

very similar to ML.

Four estimation methods are generally available: BFGS, DFP, BHHH, and

NR. In addition, since RSM models typically have many local optima, one can

use the genetic algorithm (GA), simulated annealing (SIMANN), global opti-

mization (GO) or the Nelder-Meade algorithm (NM) for the second element of

METHOD - the default is GA.

6-341

RSM

The metric is specified in mode, or a user specified desirability function can

be programmed in &userproc. The available algorithms are:

DS Derringer and Suich desirability function (default).

HAR Harrington’s desirability function.

EUCLID Euclidian distance. d 2 = (r − rt)′(r − rt). This is best suited

where the responses are similar.

STD Standardized Euclidian distance. d 2 = (r−rt)′D−1(r−rt) where

D is the diagonal matrix of the variance of the responses used

in the design stage. The vector of the standard deviations of

the design responses is specified in value. This is recom-

mended where the responses have different variances.

MAHAL Mahalanobis distance. d 2 = (r − rt)′V−1(r − rt) where V is

the covariance matrix of the responses used in the design

stage. The design responses covariance matrix is specified

in value. This is recommended where the responses have

different variances, and are correlated.

CHEB Chebyshev metric. d = maxi=1,...,n | (ri − rt,i) |.
CITY City Block (or Manhattan) metric. d =

∑n
i=1 | (ri − tt,i) |.

MINK Minkowski metric. d =
(∑n

i=1 | ri − rt,i |
ρ
)1/ρ

. The value of ρ is

specified in value.

Each desirability measure or distance metric requires parameters qualifying

each response. Thus the user needs to specify an mx6 matrix, where m is

the number of responses. The elements of this matrix are given below:

Derringer and Suich

column 1 L - lower bound

column 2 T - desired or acceptable value

column 3 U - upper bound

column 4 index weight, y ≤ T
column 5 index weight, y ≥ T
column 6 response type: ‘min’ ‘target’ ‘max’

6-342

RSM

Harrington

One Sided

column 1 L - lower value

column 2 U - upper value - U > L
column 3 assumed desirability for L

column 4 assumed desirability for U

column 5 weight

column 6 response type: ‘one’

Two Sided

column 1 L - lower bound

column 2 T - desired value

column 3 U - upper bound

column 4 assumed desirability for T

column 5 weight

column 6 response type: ‘two’

Distance Metrics

column 1 L - lower bound

column 2 T - target value

column 3 U - upper bound

column 4 weight

column 5 0

column 6 0

For the desirability models, see the references for details. For the distance

metrics, the bounds provide optional limits on the deviations; they cannot

exceed r − rl or ru − r respectively. The weights are applied multiplicatively to

the individual deviations.

See the “General Notes for Non-Linear Models” under NLS, as well as ML. An

example is given in test50.prg.

6-343

RSM

Example FRML eq0 xmat := xpand(x1˜x2˜x3,2);

FRML eqy1 y1 = xmat*amat;

FRML eqy2 y2 = b0 + exp(b1*x1+b2*x2+b3*x3 + b4*x1ˆ2);

let pmat[2,6] = 120 170 0 1 1 max

400 500 600 1 1 target;

PARAM amat;

SYMBOL = a;

ORDER = 10 1;

PARAM b0 b1 b2 b3 b4;

NLS (q) eqy1;

EQSUB = eq0;

NLS (q) eqy2;

CONST amat;

CONST b0 b1 b2 b3 b4;

PARAN x1 x2 x3;

VALUE = 0 0 0;

LOWERB = -1 -1 -1;

UPPERB = 1 1 1;

RSM (p,i) eqy1 eqy2 ;

EQSUB = eq0;

MAXIT = 40;

MODE = ds;

VLIST = pmat;

This example demonstrates a 3 factor, 2 response, RSM example. The first

equation is a polynomial expansion of the three factors to order 2 - this results

in 10 terms, using XPAND. The second response has a specific non-linear

form. The two responses are first estimated using NLS. The parameters of

the estimation equation are then held as constants, and the factors (x1, x2,

x3) now become the parameters. The second step involves the optimization

of the desirability measure, in this case the default (Derringer and Suich). A

matrix pmat, which defines the values required for the specified desirability

measure, is specified in vlist. Optimization occurs in the RSM command sim-

ilarly to ML using the genetic algorithm as the main method for locating the

optimum.

6-344

RSM

Source RSMX.SRC

See Also FRML, ML, NLS, XPAND

References Derringer, G.C. and R. Suich (1980), “Simultaneous Optimization of Several

Reasons Variables”, Journal of Quality Technology, Vol. 12(4) pp 214-219.

E.C. Harrington (1965), “The Desirability Function”, Industrial Quality Control,

Vol 21(10) pp 494-498.

6-345

SAMA

Purpose To compute a seasonally adjusted series from a non-seasonally adjusted se-

ries.

Format SAMA (options) alist;

CATNAME = categories;

FNAME = filename;

METHOD = method;

MODE = mode;

NAR = nar;

NDIFF = ndiff;

NMA = nma;

NSAR = nsar;

NSDIFF = nsdiff;

NSMA = nsma;

PERIODS = periods;

TITLE = title;

VLIST = vlist;

Input options optional, print options.

alist literal, required, adjusted series list.

categories literal, optional, save extension list.

filename literal, optional, specification file name.

method literal, optional, normalization method (GEOM).

mode literal, optional, transformation mode (NONE).

nar numeric, optional, number of autoregressive terms (0).

ndiff numeric, optional, degree of differencing (0).

nma numeric, optional, number of moving average terms (0).

nsar numeric, optional, number of seasonal AR terms (0).

nsdiff numeric, optional, degree of seasonal differencing (0).

nsma numeric, optional, number of seasonal MA terms (0).

period numeric, optional, periodicity.

title literal, optional, title.

vlist literal, required, variable list of original series.

Values in parentheses are the default values.

6-346

SAMA

Remarks SAMA computes a seasonally adjusted series by a moving average method.

The names of the unadjusted series are given in vlist for each series, a sea-

sonally adjusted series is estimated and stored in the corresponding name

in alist. These vectors can then be used as if they had been created with a

GENR statement. There must be sufficient workspace for the entire series to

be stored in core. Missing values are not permitted.

The default periodicity is determined by the type of GAUSSX workspace orig-

inally specified in the CREATE statement. Thus if (q) were specified, the de-

fault periodicity would be 4 since the workspace is set up for quarterly data;

for monthly data (m), the default periodicity is 12. For annual and undated

data, the periodicity must be explicitly specified.

GAUSSX uses three seasonal smoothing methods:

ARITH Moving average method with the seasonal factors normalized

arithmetically.

[GEOM] Moving average method with the seasonal factors normalized

geometrically.

X12 ARIMA method using the Census X12 ARIMA program.

Moving Average Method The ratio of each observation in the series to the

moving average around that observation is averaged to derived each el-

ement of the seasonal factors - there are period elements in the sea-

sonal factors. These factors are then normalized depending on the

choice of METHOD. The seasonal adjusted series are computed by di-

viding the original series by the seasonal factors.

ARIMA Method X-12 is a seasonal adjustment program developed by the

US Census Bureau for quarterly and monthly data. It is based on the

X-11 seasonal adjustment method, which is widely used by statistical

agencies throughout the world. X12 also provides the ability to forecast

seasonally adjusted time series. GAUSSX provides support for X12 from

within the SAMA procedure, and uses the code made available by the

Census Bureau. Temporary files are written to the TEMP folder.

The GAUSSX implementation of X12 ARIMA allows for three modes of

operation:

6-347

SAMA

• Allow X12 to automatically determine the ARIMA parameters. No

specification file is required, and the seasonally adjusted series are

returned in alist. See Example 3.

• The ARIMA parameters are specified by the user. Thus the or-

der of the AR (nar, nsar) and MA (nma, nsma) components are

required, as well as the degree of differencing (ndiff, nsdiff). In ad-

dition an optional series transformation is permitted using the MODE

option. Valid values for mode are NONE, LOG, INVERSE, SQRT,

LOGISTIC. No specification file is required, and the seasonally ad-

justed series are returned in alist. See Example 4.

• All X12 input is given in filename, a user defined specification file.

The non-seasonally adjusted series given in vlist will be written to

the file sama x12.asc on the TEMP folder. The user defined specifi-

cation file will generate output series with the SAVE command; these

extensions must be specified in categories, and the series will be

saved in alist. See Example 5.

Print options include b — brief output, p — pause after each screen display,

and q — quiet - no screen or printed output.

Examples of the use of X12 are given in test37.prg. The file gauss\gsx\doc\x12 -

doc.htm provides a link to documentation for Census X12.

Example 1. CREATE (Q) 19741 19814;

.

.

SAMA gnpqa invqa;

VLIST = gnpq invq;

2. SAMA consuma;

VLIST = consum;

METHOD = arith;

PERIODS = 5;

3. SAMA (p,b) equipa;

VLIST = equip;

METHOD = X12;

6-348

SAMA

4. SAMA (q) equips;

VLIST = equip;

METHOD = X12;

MODE = log;

NAR = 2; NDIFF = 1; NMA = 1;

NSAR = 2; NSDIFF = 1; NSMA = 2;

5. SAMA salesa factors;

VLIST = sales;

FNAME = g:\\gauss\gsx\x12\s11.spc;

METHOD = X12;

CATNAME = d11 d10;

In the first example, two seasonally adjusted series are created – gnpqa is

created from gnpq and invqa from invq. Since PERIODS is not specified,

the periodicity is taken as 4, based on the type of workspace (quarterly data),

with geometric scaling as the default.

In the second example, consuma is the seasonally adjusted series created

from consum; arithmetic scaling is specified, and a periodicity of 5.

Examples 3 through 5 demonstrate X12 smoothing. In example 3, the sea-

sonally adjusted series equipa is created from equip, using parameters se-

lected by X12. The b option generates brief output. Example 4 is similar,

except the user defines the ARIMA model to be used, as well as a data trans-

formation (MODE = log). The q option generates no (quiet) output. In exam-

ple 5, the user defines a specification file (.spc) which provides the required

information to X12 - thus the full power of the Census X12 is available. Series

d11 and d10 are to be saved; they are specified in the CATNAME option, and

are saved under salesa and factors respectively.

See Also ARIMA, CREATE, DIVISIA, PRIN

6-349

SAVE

Purpose To save the current GAUSSX work file onto disk.

Format SAVE vlist;

FNAME = filename;

FMTLIST = fmtopts;

OPLIST = progopts ;

Input vlist literal, optional, variable list.

filename literal, required, the name of an external file.

fmtopts literal, optional, format options.

progopts literal, optional, program options.

Remarks The SAVE statement saves a GAUSSX data set onto disk, in the specified

file, using the path specified in the data file option in the GAUSSX menu. An

extension for the file name is not required. The data set consists of all the

vectors named in vlist, plus the GAUSSX vectors C, ID, and SAMPLE. A

GAUSS data set consisting solely of the vectors given in vlist can be specified

by using the option OPLIST = GAUSS. If vlist is not specified, all the vectors

currently defined in the current GAUSSX workfile will be saved.

The data set contains all the current vectors, for the observations specified

in the current sample. To save the entire workfile, first specify a SMPL range

equivalent to the range specified in the CREATE command. Vectors with miss-

ing values are saved as is.

If filename includes an .xls extension, the file will be saved as an Excel

spreadsheet, with the variable names as headers in the first row. For other

extensions, the file will be saved in an ASCII format on the data file subdirec-

tory. The FMTLIST option can be used to specify the format for ASCII files.

Example 1. SAVE; FNAME = sfile;

2. SAVE x1 x2 x3; FNAME = sfile;

3. SAVE x1 x2; FNAME = sfile.asc; FMTLIST = width=12;

4. SAVE x1 x2; FNAME = xfile.xls;

6-350

SAVE

In example 1, a GAUSSX data set is created containing all the current vectors,

and saved in a file called sfile.

In the second example, only vectors x1, x2 and x3 are saved.

In example 3, an ASCII file called sfile.asc containing x1 and x2 is created

with a field with of 12.

An Excel file with the same variables is created in example 4.

See Also CREATE, DROP, FMTLIST, KEEP, OPEN

6-351

SAVEPROC

Purpose To save the current symbolic gradient and Hessian procedures.

Format SAVEPROC ;

GRADIENT = &gradname;

HESSIAN = &hessname;

Input &gradname string, optional, procedure name.

&hessname string, optional, procedure name.

Remarks The SAVEPROC statement saves the gradient and Hessian procedures cre-

ated using &symgrad and &symhess. These procedures can thus be stored

and reused without having to recreate them each time.

The procedures are saved as ASCII files with a prc extension on the GAUSSX

data path.

Example ML (p,i,s) eq1 eq2;

METHOD = nr bhhh nr;

GRADIENT = &symgrad;

SAVEPROC ;

GRADIENT = garchp;

This example stores the symbolic gradient as a GAUSS procedure called

garchp.prc on the GAUSSX data path.

See Also LOADPROC, ML

6-352

SEV Process

Purpose Creates a vector of log likelihoods for a smallest extreme value process.

Format z = SEV (y, indx, pvec);

Input y literal, dependent variable.

indx literal, location index.

pvec literal, scale parameter.

Output z Vector of log likelihoods.

Remarks The expected value of loci is parameterized as:

E(loci) = indxi.

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β and pvec, are estimated using maximum likelihood; thus

this can be used for linear or non-linear models. The scale parameter must

be positive. The expected value of location is the mode of y.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-353

SEV Process

Example PARAM b0 b1 b2;

PARAM scale; value = 1;

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

1 FRML eq1 llfn = sev(fail,indx,scale);

ML (p,i) eq0 eq1;

METHOD = nr bhhh bhhh;

2 FRML eq2 llfn = sev(fail˜censor,indx,scale);

ML (p,i) eq0 eq2;

In example 1, a smallest extreme value model is estimated using maximum

likelihood, with the index defined in eq0, and the log likelihood in eq1. Exam-

ple 2 shows the same estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-354

SIMANN

Purpose Control over the simulated annealing process.

Format GAUSSX COMMAND vlist;

METHOD = methodlist;

SIMANN = controllist;

Input vlist literal, required, variable list.

methodlist literal, required, algorithm list.

controllist literal, optional, list of control options.

Remarks Simulated annealing is a search algorithm used during nonlinear estimation

that permits both uphill and downhill movements during the optimization pro-

cess. It can be very useful for testing if one is at a global optimum, as well as

for situations when one gets a “failure to improve likelihood” error message. It

is also very robust when parameter upper or lower bounds are encountered.

Simulated annealing can be implemented as a step method during the esti-

mation of nonlinear systems - FIML, GMM, ML, and NLS.Thus one can use SA

for the first two elements of methodlist to find the parameter values, and then

use one of the other stepsize algorithms for the final method to evaluate the

Hessian. However, it is considerably slower than the other stepsize methods,

although the speed can be adjusted by adjusting the control options. SA can

be used with constrained optimization - in this case a penalty function is used

to constrain the parameters to the feasible region.

Control over the SA options is provided by the SIMANN option; this consists

of a 4 element vector controllist; these elements are:

1. The initial temperature. The higher the temperature, the larger the step

length. Steps that increase the objective function are always accepted;

steps that decrease it are accepted on the basis of the Metropolis crite-

ria. Default = 5.

2. Temperature reduction factor, applied at each new iteration. Default =

.85.

3. Number of step length adjustments per iteration. The step length is ad-

justed so that approximately half of all evaluations are accepted. Default

= 100.

6-355

SIMANN

4. Number of cycles. During this number of cycles, the number of accep-

tances is recorded as an input into the step length adjustment. Default

= 20.

Example NLS(p,i) eq1;

METHOD = gauss sa nr ;

SIMANN = 8 .75 20 10;

MAXIT = 40;

This example would undertake non-linear least squares on eq1 using gauss

as the initial step method, sa the remaining steps, except for the final step

(where one needs the Hessian) which is estimated using Newton-Raphson

(nr). The SA process uses an initial temperature of 8, a reduction factor of

.75, 20 step length adjustments, and 10 cycles.

See Also FIML, GMM, ML, NLS,

6-356

SMPL

Purpose To specify which observations are to be included in subsequent operations.

Format SMPL vlist ;

Input vlist required, variable name or observation list.

Remarks There are two types of SMPL statement. The first type, shown in examples

1 to 3 below, specifies pairs of first and last observations to be included in

the current sample. In the second type, vlist is the name of a vector created

in a previous operation; example 4 depicts such a case. Observations are

included for those cases for which svector takes a value of unity - all obser-

vations for which svector takes any other value (including missing values)

are excluded.

The range specified must fall within the range specified in the CREATE state-

ment. Similarly, the range arguments must be of the same type (annual,

quarterly, etc) as the arguments used in the CREATE statement.

Example 1. SMPL 1973 1980;

2. SMPL 197201 197212 197401 197412;

3. n1 = 1971; n2 = 1984;

SMPL n1 n2;

4. SMPL svector;

In example 1, eight observations are included in the current sample – 1973

to 1980. In the second example, two years of monthly observations are spec-

ified, for 1972 and 1974. Variables can be used as arguments, as is shown

in example 3. Example 4 depicts the second type of SMPL statement, where

svector was previously defined either by a GENR or LOAD statement.

See Also CREATE

6-357

SOLVE

Purpose Computes the solution of a non-linear equation system.

Format SOLVE vlist ;

ENDOG = endlist;

EQNS = elist;

EQSUB = macrolist;

MAXIT = maxit;

METHOD = methname;

MODE = mode;

JACOB = Jacobian;

TOL = tolerance;

Input vlist literal, required, variable list.

endlist literal, required, endogenous variable.

elist literal, required, equation list.

macrolist literal, optional, macro equation list.

maxit numeric, optional, maximum number of iterations (20).

methname literal, optional, stepsize method (DIFFER).

mode literal, optional type of simulation (STATIC).

Jacobian literal, optional, Jacobian.

tolerance numeric, optional, param. convergence tolerance (.001).

Values in parentheses are the default values.

Remarks The SOLVE command solves for the endogenous variables of a system of

equations. The order of the fitted values corresponds to the order of the

variable in the ENDOG list. Note that the ENDOG and EQNS commands are

required. The forecast variables are available for use in the same way as a

variable created through FORCST.

The type of simulation can be set by the MODE options. Simulation occurs in

two modes:

[STATIC] Lagged dependent variables take their historical values.

DYNAMIC Lagged dependent variables take their simulated values.

6-358

SOLVE

Two step size methods are available using the METHOD option:

[DIFFER] Finite difference of Jacobian.

BROYDEN Broyden secant approximation.

The initial starting values used are the historical values of the endogenous

variables. Thus for future periods, a best guess should be used for each

of the endogenous variables. GAUSSX will evaluate the Jacobian if it is not

specified, though this increases the computation time.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test03.prg.

Example FRML eq1 y1 = a0 + a1*x1 + a2*y2;

FRML eq2 y2 = b0 + b1*x3 + b2*y1ˆ2 + b3*lag(y1,1);

SMPL 2 12;

1. SOLVE y1s y2s;

ENDOG = y1 y2;

EQNS = eq1 eq2;

2. SOLVE y1hat y2hat;

ENDOG = y1 y2;

EQNS = eq1 eq2;

MODE = dynamic;

JACOB = 1 -a2

-2*b2*y1 1;

In the first example, the roots of a system of equations (which have been pre-

viously estimated) are determined by SOLVE. Since there is a lagged endoge-

nous variable, the first observation is dropped using the SMPL command.

The value of the two endogenous variables are printed for each observation.

GAUSSX takes care of the Jacobian. Note that this is a static simulation, the

lagged y1 are the historic values.

In the second example, the Jacobian is specified by the user. A dynamic

6-359

SOLVE

simulation takes place. The solution to the equation system is stored in the

vectors y1hat and y2hat.

See Also FORCST

6-360

SPECTRAL

Purpose Creates a power spectrum from a series.

Format y = SPECTRAL (x, wind);

Input x Nx1 real input vector.

wind string, spectral window.

Output y Nx1 power spectrum vector.

Remarks SPECTRAL returns the power spectrum for a series x. The power spectrum y

consists of a vector of half the length of x, the remainder being set to missing.

A spectral window can be specified - the available windows are BARTLETT,

HANNING, PARZEN, UNIFORM and WELCH. The default is UNIFORM. Power spec-

tral density uses the FFT routines, which uses zeros to pad to powers of 2.

This works well for smooth windows, but creates a discontinuity for UNIFORM

windows - hence, in this case, a slow FFT is used to avoid padding.

SPECTRAL is pure GAUSS code, and can be used independently of GAUSSX.

An example of SPECTRAL demonstrating both the generation of a periodogram

and filtering is given in test24.prg.

Example library gaussx ;

y = spectral(x,Parzen)’

This creates y, the power spectra of x, with a Parzen spectral window.

Source GXPROCS.SRC

See Also WINDOW

References Press, W.H. et. al. (1986), Numerical Recipes, Cambridge University Press,

New York.

6-361

STATLIB

Purpose Computes measures for the specified distribution.

Format llf = FN LLF (x, p1, p2, p3);

pdf = FN PDF (x, p1, p2, p3);

cdf = FN CDF (x, p1, p2, p3);

cdfi = FN CDFI (p, p1, p2, p3);

y = FN RND (n, k, p1, p2, p3);

Input FN string, the name of the probability distribution - see below.

x NxK matrix, the argument to the specified distribution.

p NxK matrix of probabilities.

n scalar, row dimension.

k scalar, column dimension.

p1 NxK matrix or scalar, first parameter for the specified distribution.

p2 NxK matrix or scalar, optional second parameter for the specified

distribution.

p3 NxK matrix or scalar, optional third parameter for the specified

distribution.

Output llf NxK matrix of log likelihoods

pdf NxK matrix of probabilities

cdf NxK matrix of cumulative probabilities

cdfi NxK matrix of inverse cumulative probabilities

y NxK matrix of random variates

Remarks Five functions are available for each supported distribution - the log likelihhod,

the probability denisty function, the cumulative density function, the inverse

cumulative density function and random variates. Each distribution is charac-

terized by up to three parameters - p1, p2 and p3 - the number of parameters

depends on the specified distribution. Ususally these parameters are scalars;

otherwise they must be conformable with the argument.

The following distributions are supported in STATLIB:

BETA The beta distribution takes a continuous argument, x, which

must lie in the interval [0 1], and two positive shape parame-

ters.

6-362

STATLIB

BETA4 The four parameter beta distribution takes a continuous posi-

tive argument, x, two positive shape parameters, a lower bound

and an upper bound.

BOXCOX The BoxCox distribution takes a continuous argument, x, and

three parameters, p1 the location parameter, p2 the positive

scale parameter, and p3 the BoxCox transformation parame-

ter.

BERNOULLI The Bernoulli distribution takes an integer argument, x, which

is either zero or unity, and a single probability parameter,p1,

which must lie in the interval [0 1].

BINOM The binomial distribution takes an integer, non-negative argu-

ment, x, and two parameters,n, which is a positive integer, and

p, which must lie in the interval [0 1]. It returns the probability

of x successes in n independent trials, where p is the proba-

bility of success in any given trial.

BURR The Burr distribution takes a continuous positive argument, x,

a positive scale parameter, and two positive shape parame-

ters.

CAUCHY The Cauchy distribution takes an unbounded continuous ar-

gument, x, and two parameters, p1, the median, and p2, a

positive scale parameter. It has no moments. It is infinitely di-

visible, since the mean of n-independent Cauchy distributions

is also Cauchy.

CHISQ The Chi-squared distribution takes a non-negative continuous

argument, x, and a single positive shape parameter, v, the de-

gree of freedom. While v is normally taken as integer, STATLIB

implements CHISQ with continuous v. The sum of squares of

v observations, each independently distributed standard nor-

mal, is distributed chi-squared with v degrees of freedom.

CHISQ_SCALED The scaled Chi-squared distribution takes a non-negative

6-363

STATLIB

continuous argument, x, a positive scale parameter, and a sin-

gle positive shape parameter, v, the degree of freedom. While

v is normally taken as integer, STATLIB implements CHISQ -

SCALED with continuous v.

ERF The ERF distribution takes a continuous unbounded argu-

ment, x, and a single positive scale parameter. The ERF dis-

tribution is similar to the normal distribution, but with a zero

mean.

EXPON The exponential distribution takes a non-negative continuous

argument, x, and a single positive scale parameter, λ. The

exponential function is used to model waiting times.

F The F distribution takes a continuous non-negative argument,

x, and two positive shape parameters, v1 and v2, the degrees

of freedom. While v1 and v2 are normally taken as integer,

STATLIB implements F with continuous shape parameters.

F_SCALED The scaled F distribution takes a continuous non-negative ar-

gument, x, a positive scale parmeter, and two positive shape

parameters, v1 and v2, the degrees of freedom. While v1
and v2 are normally taken as integer, STATLIB implements F -

SCALED with continuous shape parameters.

FATIGUELIFE The fatigue life distribution (or Birnbaum Saunders distri-

bution) takes a continuous positive argument, x, and two pa-

rameters, p1, a positive scale parameter, and p2, a positive

shape parameter. It is used to model the lifetime of a device

suffering from fatigue.

FOLDEDNORMAL The folded normal distribution takes a continuous positive

argument, x, and two parameters, p1, a positive mean pa-

rameter, and p2, a positive scale parameter. If y is distributed

normally, then |y| is distributed as folded normal.

FRECHET The Frechet distribution takes a continuous positive argument,

6-364

STATLIB

x, and two parameters, p1, a positive scale parameter, and

p2, a positive shape parameter. The Frechet distribution is a

special case of the generalized extreme value distribution

GAMMA The gamma distribution takes a continuous non-negative ar-

gument, x, a positive scale parameter, p1, and a positive shape

parameter, p2. The gamma distribution is typically used in re-

liability models.

GED The generalized error distribution (or exponential power dis-

tribution) takes a continuous argument, x, and three parame-

ters, p1, a location parameter, p2, a positive scale parameter,

and p3, a positive shape parameter. This includes the Laplace

distribution (p3 = 1) and the normal distribution (p3 = 2).

GENGAMMA The generalized gamma distribution takes a continuous non-

negative argument, x, a positive scale parameter, p1, and two

positive shape parameters, p2 and p3. This is a generalization

of the gamma distribution, and includes the exponential, log

normal, Maxwell and Weibull distributions as special cases.

GENLOGISTIC The generalized logistic distribution takes a continuous ar-

gument, x, x, and three parameters, p1, a location parameter,

p2, a positive scale parameter, and p3, a positive skew pa-

rameter (< 1 for left skew, > 1 for right skew). It is used to

model extremes, such as maximum rainfall.

GENPARETO The generalized Pareto distribution takes a continuous posi-

tive argument, x (x > p1), and three parameters, p1, a positive

location parameter, p2, a positive scale parameter, and p3, a

positive shape parameter.

GEOMETRIC The geometric distribution takes a non-negative integer argu-

ment, x, and a single probability parameter, p, which must lie

in the interval [0 1]. It returns the probability of x failures be-

fore a success, where p is the probability of success in any

given trial.

6-365

STATLIB

GUMBEL The Gumbel (or largest extreme value) distribution takes a

continuous unbounded argument, x, a location parameter, p1
(the mode), and a positive scale parameter p2. The Gumbel

distribution is used in the derivation of the MNL model.

HALFNORMAL The half normal distribution takes a continuous positive ar-

gument, x, and a positive scale parameter p1. It is propor-

tional to the normal distribution, restricted to the positive do-

main.

HYGEOM The hypergeometric distribution takes a non-negative integer

argument, x, and three positive integer parameters, m, k, and

n. If there exist k objects of a certain type out of a total of m
objects, and n objects are drawn at random without replace-

ment, then pd f is the probability of drawing exactly x items of

the specified type.

INVGAUSS The inverse Gaussian distribution takes a continuous positive

argument, x, and two parameters, p1, the mean, and p2, a

positive scale parameter.

JOHNSON_SB The Johnson SB distribution takes a continuous bounded

argument, x, and four parameters, p1, a location parameter,

p2, a positive scale parameter, p3 a shape parameter, and p4,

a positive shape parameter.

JOHNSON_SL The Johnson SL distribution takes a continuous bounded ar-

gument, x > p1, and four parameters, p1, a location parame-

ter, p2 = 1, a scale parameter, p3 a shape parameter, and p4,

a positive shape parameter.

JOHNSON_SU The Johnson SU distribution takes a continuous unbounded

argument, x, and four parameters, p1, a location parameter,

p2, a positive scale parameter, p3 a shape parameter, and p4,

a positive shape parameter. x is bounded by p1 and p1 + p2

LAPLACE The Laplace distribution takes an unbounded continuous ar-

gument, x, and two parameters, p1, the mean, and p2, a posi-

tive scale parameter. The Laplace distribution results from the

6-366

STATLIB

difference of two independent identically distributed exponen-

tial random variables.

LEV Largest extreme value distribution - see the Gumbel distribu-

tion.

LEVY The Levy distribution takes a continuous positive argument, x,

and a positive scale parameter, p1. Some random walks can

be modeled with this distribution.

LOGGAMMA The log-gamma distribution takes a continuous non-negative

argument, x, a positive scale parameter, p1, and a positive

shape parameter, p2.

LOGARITHMIC The logarithmic distribution is a one parameter generalized

power series distribution. It takes a non-negative integer ar-

gument, x, and a single probability parameter,p1, which must

lie in the interval [0 1].

LOGISTIC The logistic distribution takes a continuous argument, x, and

two parameters, p1, the mean, and p2, a positive scale pa-

rameter. It has longer tails than the normal distribution.

LOGLOG The log logistic distribution takes a continuous positive argu-

ment, x, and two parameters, p1 and p2, the mean and scale

of the associated logistic distribution. p2 must be positive.

LOGNORM The log-normal distribution takes a continuous positive argu-

ment, x, and two parameters, µ and σ, the mean and stan-

dard deviation of the associated normal distribution. σ must

be positive. If y is log-normal, then ln(y) is normal. It is used

for variates which can only take positive values, such as the

size of particles in an emulsion.

MAXWELL The Maxwell Boltzmann distribution takes a continuous posi-

tive argument, x, and a single positive scale parameter, p1.

NEGBIN The negative binomial distribution takes an integer, non-negative

argument, x, and two parameters, s, which is a non-negative

6-367

STATLIB

integer, and p, which must lie in the interval [0 1]. pd f is the

probability of x failures before the sth success, where p is the

probability of success in any given trial. STATLIB implements

NEGBIN with continuous s.

NCCHISQ The non-central Chi-squared distribution takes a non-negative

continuous argument, x, a positive shape parameter, v, the

degree of freedom, and a positive non-centrality parameter,

λ. While v is normally taken as integer, STATLIB implements

CHISQ3 with continuous v.

NCF The non-central F distribution takes a continuous non-negative

argument, x, two positive shape parameters, v1 and v2, the

degrees of freedom, and a positive non-centrality parameter,

λ. While v1 and v2 are normally taken as integer, STATLIB im-

plements F with continuous shape parameters.

NCT The non-central T distribution takes an unbounded continu-

ous argument, x, a positive shape parameter, v, the degree of

freedom, and a positive non-centrality parameter, λ. While v
is normally taken as integer, STATLIB implements CHISQ3 with

continuous v.

NORMAL The normal distribution takes a continuous unbounded argu-

ment, x, and two parameters, p1, the mean, and a positive

scale parameter, p2, (the standard deviation).

PARETO The Pareto distribution takes a continuous positive argument,

x (x > p1), and two parameters, p1, a positive location param-

eter, and p2, a positive shape parameter. It is used to model

income distribution.

PEARSON The Pearson type III distribution takes a continuous nonnega-

tive argument, x, and three parameters, p1, the location, p2,

a positive scale parameter, and p3, a positive shape parame-

ter.. This distribution is very general, and includes as special

cases the beta, gamma, normal and t distributions. This family

6-368

STATLIB

is modeled assuming zero mean. The standard normal distri-

bution corresponds to p1 = 1, p2 = 1, and p3 = 0.

PERT The PERT distribution takes a continuous argument, x, which

must lie in the interval [a c], and three parameters, a, the min-

imum, b, the mode, and c, the maximum, c > b > a.

POISSON The Poisson distribution takes a non-negative integer argu-

ment, x, and a single positive parameter, λ, the mean. The

pd f is the probability of x events occurring within a period,

where λ is the expected number of events in that period.

POWER The power distribution takes a continuous argument, x, which

must lie in the interval [a b], and three parameters, a, the min-

imum, b, the maximum, and a positive shape parameter, v.

RAYLEIGH The Rayleigh distribution takes a continuous argument, x, and

a single positive scale parameter, p1. The Rayleigh distribu-

tion is equivalent to a Weibull distribution with shape = 2.

RECIROCAL The reciprocal distribution takes a continuous argument, x,

which must lie in the interval [a b], and two parameters, a > o,

the minimum, and b, the maximum.

RECTANGULAR The rectangular distribution takes an integer argument, x,

which must lie in the interval [a b], and two parameters, a, the

minimum, b, the maximum, where b > a. The pd f has the

same probability at each point in the specified interval.

SEV The smallest extreme value distribution takes a continuous

unbounded argument, x, a location parameter, p1 (the mode),

and a positive scale parameter p2.

SKEWNORMAL The skew normal distribution takes a continuous argument,

x , and three parameters, p1, a location parameter, p2, a pos-

itive scale parameter and p3, a skew parameter (-ve for left

skew, +ve for right skew).

6-369

STATLIB

STEP The step distribution takes an integer argument, x, which must

lie in the interval [a b], and three parameters, a, the minimum,

b, the maximum, and s, the step,

STUDENTS_T The Student’s t distribution takes an unbounded continuous

argument, x, and a single positive shape parameter, v, the de-

gree of freedom. While v is normally taken as integer, STATLIB

implements Student’s t with continuous v. The Student’s t dis-

tribution tends to the normal distribution as v→ ∞.

T_SCALED The scaled T distribution takes an unbounded continuous ar-

gument, x, a location parameter, µ, a positive scale prarmeter,

α, and a positive shape parameter, v, the degree of freedom.

While v is normally taken as integer, STATLIB implements T -

SCALED with continuous v. The T SCALED distribution is a

generalization of the Student’s t distribution.

TRIANGULAR The triangular distribution takes a continuous argument, x,

which must lie in the interval [a b], and three parameters, a,

the minimum, b, the maximum, and c, the mode. b > c > a.

UNIFORM The uniform distribution takes a continuous argument, x, which

must lie in the interval [a b], and two parameters, a, the min-

imum, b, the maximum, where b > a. pd f has the same

probability at each point in the specified interval.

VONMISES The Von Mises distribution takes a continuous non-negative

argument, x, which must lie in the interval [0 2π], and two pos-

itive parameters, p1, the location (also bounded as x), and p2,

the scale.

WEIBULL The Weibull distribution takes a continuous non-negative ar-

gument, x, and two positive parameters, p1, the scale, and

p2, the shape. The type 1 extreme value distribution is de-

rived from the Weibull distribution.

STATLIB is pure GAUSS code, and can be used independently of GAUSSX.

6-370

STATLIB

The PDF and CDF for each distribution is given in Appendix A.8. Random

variates use the KissMonster pseudo random number algorithm, hence use

_KMseed to set the seed.

The parameters of a statlib distribution can be estimated using ML. Note that

for those distributions that are defined for a positive argument (eg. Weibull),

a threshold parameter can be estimated.

An example ofSTATLIB is given in test64.prg.

Example library gaussx ;

x = seqa(0,.2,6);

a = 2; b = 4;

p = beta_pdf(x,a,b);

x’ = 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

p’ = 0.0000 2.0480 1.7280 0.7680 0.1280 0.0000

This computes the probability given the argument x and parameters a and b

for the beta pdf.

Source STATLIB.SRC

See Also CDF, CDFI, PDF, QDFN, RND

References Evans, M., N. Hastings and B. Peacock (1993), Statistical Distributions, 2nd

ed. John Wiley, New York.

6-371

STEPWISE

Purpose This procedure undertakes stepwise regression.

Format { xmat, namestr } = STEPWISE (dta, dtaname, oplist);

Input dta NxK matrix of data.

dtaname Kx1 string array of names, or 0.

oplist 4x1 vector of program options.

Output xmat matrix of selected data

namestr name of each column of xmat

Remarks Stepwise linear regression examines variables incorporated in the model at

every stage of the regression. A variable which may have been the best

choice to enter the model at an early stage may later become non-significant

because of the relationships between it and other variables now in the regres-

sion. Once a variable is proven to be non-significant, it is removed from the

model. This process continues until no more variables can be accepted and

no more can be rejected.

dta is the NxK data matrix. The first column is taken as the dependent vari-

able, and the remaining columns are the independent variables. A constant

is not necessary. The names of each variable is provided in the Kx1 string

array dtaname; default values are used if dtaname equals zero.

The program control options are specified in the 4 element vector oplist. The

options available are:

1 pfin Probability of F to Enter

2 pfout Probability of F to Remove

3 Scaling: 0 - none; 1 - standardized (zero mean and unit variance);

2 - ranged (-1 to +1).

4 Hierarchy: 0 - linear only; 1 - liner and quad; 2 - linear and cross;

3 - linear and cross and quad.

The process of determining whether or not a variable is significant is based

on the F-statistic; the user provides the statistical significance level (alpha)

for variables entering and exiting the model. A value of alpha near 1.0 for pfin

6-372

STEPWISE

allows variables to easily enter the model, while a value of alpha near 0.0 for

pfin prevents variables from entering the model. Similarly, a value of alpha

near 1.0 for pfout prevents variables from easily leaving the model, while a

value of alpha near 0.0 for pfout enables variables to easily be removed from

the model. Alpha values of (0.05,0.05) are recommended. Alpha values

of (0.999,0.999) closely approximate ordinary least squares. Note that for

consistency, the probability of exit must be less than the probability of entry.

The data is initially scaled based on the third element of oplist. The fourth

element (hierarchy) determines the type of expansion. With hierarchy set to

zero, STEPWISE uses a constant and the data provided in dtaname. Other-

wise, the data can be expanded to include cross and/or quad terms by setting

hierarchy to the requisite value.

Although stepwise methods can find meaningful patterns in data, it is also

notorious for finding false patterns.

STEPWISE is pure GAUSS code, and can be used independently of GAUSSX.

An example of stepwise is given in test63.prg.

Example library gaussx ;

oplist = { .4 .25 0 1 };

{xnew, xnames} = stepwise(y˜xmat, 0, oplist);

This example shows how a stepwise regression is applied to a matrix of po-

tential explanatory variables xmat, expanded to include quad terms. Values

of .4 and .25 are used for the F statistic probability of entry and exit, respec-

tively.

Source STEPWISE.SRC

See Also XPAND

References Miller, A.J. (1966), “The convergence of Efroymson’s stepwise regression al-

gorithm”, American Statistician, Vol. 50(2), pp. 180-181.

6-373

STORE

Purpose To store global variables in a GAUSSX workfile.

Format STORE varlist;

VLIST = matname;

Input varlist literal, required, variable list.

matname literal, optional, matrix name.

Remarks The STORE command instructs GAUSSX to access the named global vectors,

and store them on the current GAUSSX workfile. The current SMPL state-

ment remains in effect. This command allows vectors created using GAUSS

commands to be accessed by GAUSSX . The VLIST option allows the user

to access the global matrix matname, and store each column as a GAUSSX

variable.

STORE clears the named series - they can now only be accessed using

GAUSSX commands. To make a series in the GAUSSX workspace into a

global variable, use the FETCH command.

See the example in test06.prg, and also the discussion in Appendix C.

Example 1. Test of Henon equation;

num = 300; = -1.4; b = .3;

x = zeros(num,1); y = zeros(num,1);

i = 2; do until i > num;

j = i-1;

x[i,1] = 1 + y[j,1] + a*x[j,1]ˆ2;

y[i,1] = b*x[j,1];

i = i+1;

endo;

STORE x y;

SMPL 100 300;

OLS x c y;

2. z = rndu(100,3);

STORE z1 z2 z3;

VLIST = z;

6-374

STORE

The first example shows how global vectors created by ordinary GAUSS state-

ments can be incorporated into a GAUSSX workspace. In this case, x and y

are the state vectors of a Henon map, and once they have been stored they

are subsequently treated as ordinary GAUSSX vectors.

The second example shows how the columns of a GAUSS matrix z can be

stored as GAUSSX variables.

See Also FETCH, GAUSS

6-375

SURE

Purpose Estimates the coefficients of a system of a seemingly unrelated equations

Format SURE (options) elist;

PDL = pdllist;

METHOD = methname;

TITLE = title;

WINDOW = windowtype;

Input options optional, print options.

elist literal, required, equation list.

pdllist literal, optional, options for PDL.

methname literal, optional, covariance method (NONE).

title string, optional, title.

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

LLF Log likelihood.

VCOV Parameter Covariance matrix.

COVU Residual Covariance matrix.

Remarks The SURE command estimates a system of linear equations (a stacked equa-

tion system) in two stages. In the first stage each equation is estimated using

OLS; then using the estimated variance covariance matrix of residuals, the

system is estimated using generalized least squares. Non-linear SURE can

be carried out using the NLS command, and specifying MAXITW = 1;

See the “General Notes for Linear Model” under OLS. An example is given in

test02.prg.

6-376

SURE

Example 1. SURE eq1 eq2 ;

2. SURE (d,p,s,v) eq1 eq2 eq3;

The first example estimates the system of linear equations specified in previ-

ous FRML commands.

The second example estimates the three equation system; execution pauses

(p) after each screen display, descriptive (d) and diagnostic (s) statistics are

provided, and the variance-covariance (v) matrix is displayed.

See Also FRML, OLS, PDL, TITLE, WEIGHT, WINDOW

References Zellner, A. (1962), “An Efficient Method of Estimating Seemingly Unrelated

Regressions and Tests of Aggregation Bias”, JASA, Vol. 57, pp. 348-368.

6-377

SURVIVAL

Purpose Computes non-parametric estimates of survival and hazard rates.

Format SURVIVAL (options) varlist ;

CENSOR = cenvar;

GROUP = grouplist;

METHOD = method;

MODE = measure;

RANGE = rangelist;

TITLE = title;

VLIST = depvar;

Input options optional, print options.

varlist literal, required, variable list.

cenvar literal, optional, censor variable.

grouplist literal, optional, group variable list.

method literal, optional, algorithm

measure literal, optional, survival measure.

rangelist literal, optional,range list.

title string, optional, title.

depvar literal, required, survival time.

Output _MTTF Distribution characteristics.

Remarks The SURVIVAL command computes non-parametric estimates of survival or

hazard rates, and produce a tabular output of the rate, the standard error and

confidence bands. Duration or survival models typically model the duration

of an event, or the time to failure.

In the default, there is no censoring, and only depvar needs to be specified.

Censoring occurs if units are removed prior to failure, or are still operating at

the conclusion of the test (right censored). For the censored case, cenvar is

specified, with each element taking a value of unity if the unit was censored,

else zero.

varlist consists of up to four elements - the statistic, the standard error, and

the lower and upper confidence bands. The survival measure bands are

6-378

SURVIVAL

lower truncated at zero. If varlist consists of less than four elements, then

only these elements will be evaluated.

The non-parametric algorithm is set in method. The available algorithms are:

KAPLAN Kaplan-Meier. This is the default.

NELSON Nelson-Aalen.

The survival measure is set in measure. The available measures are:

SURVIVAL The survival rate. This is the default.

CUMFAIL The cumulative failure rate.

CUMHAZARD The cumulative hazard rate.

HAZARD The hazard rate.

Stratified data can be sequentially estimated by using grouplist; however this

is descriptive only, and varlist is ignored.

Print options include b — print brief output only, d — print descriptive statis-

tics, p — pause after each screen display, and q — no screen display (quiet).

A subset of the output can be specified using the RANGE command.

An example of SURVIVAL is given in test58.prg.

Example SURVIVAL (p) ch cherr;

TITLE = "Censored Cumulative Hazard";

MODE = cumhazard;

METHOD = nelson;

RANGE = 500 2000 ;

VLIST = failuret;

CENSOR = cenvar;

PRINT (p) failuret ch cherr;

This example generates the cumulative hazard rate (ch) and standard errors

(cherr) for the variable failuret with the indicator of right censoring being

given in cenvar. The Nelson-Aalen algorithm is used, and output is reported

for values of failuret that fall in the specified range.

6-379

SURVIVAL

See Also DURATION, GROUP, TITLE

6-380

SV Process

Purpose Creates a vector of log likelihoods for a stochastic volatility process.

Format z = SV (resid, gvec);

Input resid literal, vector of residuals.

gvec literal, vector of parameters for the SV process.

Output z Vector of log likelihoods.

ht Vector of the log conditional variance.

Remarks The coefficients of the SV process are estimated using quasi maximum likeli-

hood, based on the Kalman filter algorithm. The SV model is given by:

yt =
√

(ht)εt
εt ∼ N(0, 1)

log ht = γ0 + γ1 log ht−1 + σνυt

υt ∼ N(0, 1)

The first equation describes the structure of the model. Typically, yt would

be the residuals from a previously estimated model. The second and fourth

equations specify the distribution of the residuals, while the third equation

specifies the structural form of the conditional variance ht. gvec consists of

the three parameters in this equation: γ0, γ1, and σ2
υ.

The first equation can be transformed into:

log y2
t = −1.27 + log ht + ηt

where E(ηt) = 0 and V(ηt) = .5π2. This is the measurement equation, while

the log ht equation is the transition equation. When ηt is approximated by a

normal distribution, we have a standard dynamic linear model, that can be

estimated using the Kalman Filter algorithm.

resid should be detrended and have zero mean. It is usually not a good

idea to estimate structural parameters concurrently with the SV process, since

there are significant identification issues.

6-381

SV Process

Note that σ2
υ > 0 and stationarity requires that |γ1| < 1. Consequently, con-

strained ML is usually required. An example of SV is given in test30.prg.

See the “General Notes for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

FORCST res;

MODE = resid;

PARAM gam0 gam1 varnu ;

VALUE = 3 .6 1 ;

FRML ec1 varnu >= .0001;

FRML ec2 abs(gam1) <= .9999;

FRML eq1 lf = sv(res,gam0|gam1|varnu);

ML(p,i) eq1 ;

EQCON = ec1 ec2;

hfit = exp(_ht);

STORE hfit;

In this example, a stochastic volatility model is estimated using the residuals

from an OLS regression. After the constrained ML estimation, the conditional

variance hfit is derived and stored.

Source KALMANX.SRC

See Also NLS

References Harvey, A.C., E. Ruiz, and N. Shephard. (1994), “Multivariate Stochastic

Variance Models”, Review Econ. Studies, Vol 61, pp 247-264.

Mills, T. (1999), The Econometric Modelling of Financial Time Series, 2nd ed.

Cambridge University Press.

6-382

SVD

Purpose Undertakes singular value decomposition analysis.

Format SVD (options) vlist ;

TITLE = title;

VLIST = elist;

WEIGHT = wtname;

Input options optional, print options.

vlist literal, required, variable list.

title string, optional, title.

elist literal, optional, variable list.

wtname literal, optional, weighting variable.

Output _SVD Condition index.

Remarks Singular value decomposition analysis (SVD) is carried out on the entire ma-

trix of variables specified in vlist. Each vector is scaled by the program such

that its norm is unity. Lagged variables can be used by specifying the lag in

parenthesis. Variables that are specified as logs should first be e-scaled –

this is carried out if the vector is included in elist. Weighting is available using

the WEIGHT option.

Print options includes p — pause after each screen display, and q — quiet -

no output displayed.

Example GENR lnx1 = ln(x1);

SVD (p) lnx1 x2 x3;

VLIST = lnx1;

In this example, SVD is carried out on the matrix consisting of the vectors

lnx1, x2, and x3. lnx1 is first e-scaled since it is a variable that is measured

as a log, and not as a level.

See Also COVA, TABULATE, TITLE, WEIGHT

References Belsley, D., E. Kuh, and R. Welsch (1980), Regression Diagnostics, Wiley,

New York.

6-383

TABULATE

Purpose Constructs a hierarchical table of descriptive statistics.

Format TABULATE (options) varlist ;

CATNAME = categories;

FMTLIST = fmtopts;

GROUP = grouplist;

MODE = statmode;

TITLE = title;

VLIST = classlist;

WEIGHT = wtname;

Input options optional, print options.

varlist literal, required, variable list.

categories literal, optional, a list of category names.

fmtopts literal, optional, format options.

grouplist literal, optional, group variable list.

statmode literal, optional, statistic mode list (NUM).

title string, optional, title.

classlist literal, required, class variable list.

wtname literal, optional, weighting variable.

Output STATS Tabular output.

Remarks This procedure replicates Proc Tabulate in SAS. It provides a fast and easy

way of tabulating a set of data across two class variables according to a

specified set of statistics.

TABULATE produces a table for each of the analysis variables specified in

varlist. The classification levels are derived from each of the two integer

variables specified in classlist. These two variables specify the row category

levels and the column category levels respectively. The labels for each of

these class variables is optionally specified in categories. If only one variable

is specified in classlist, a one-way classification is carried out.

For each row and column category, the statistics that are produced are spec-

ified in statmode the default is NUM. The available statistics are:

6-384

TABULATE

NUM The count of the number of elements in the cell.

SUM The sum of the analysis variable for the cell.

MIN The minimum value of the analysis variable for the cell.

MAX The maximum value of the analysis variable for the cell.

ROW% The row percentage of the number of elements in the cell.

COL% The column percentage of the number of elements in the cell.

TOT% The total percentage of the number of elements in the cell.

MEAN The mean of the analysis variable for the cell.

STDV The standard deviation of the analysis variable for the cell.

VAR The variance of the analysis variable for the cell.

FIT The expected cell count.

RESID The raw residual for each cell.

STDRES The standardized residual for each cell.

ADJRES The adjusted residual for each cell.

CHISQ The Chi-squared contribution for each cell.

Print options include p — pause after each screen display, and s — print

contingency table statistics. A total is automatically generated.

User defined formatting is available using the FMTLIST option. While a table

with a width greater than 80 columns will wrap, the output is set for no wrap,

so that the output can be subsequently correctly viewed and/or printed. The

numeric values of the table is returned as a global variable called stats.

Weighting is available using the WEIGHT option. Weighting only applies to

the analysis variable, and not to counts or percentages.

An example of TABULATE is given in test08.prg.

Example TABULATE (p,s) salary;

VLIST = agegrp sex;

CATNAME = age1 age2 age3 age4 male female;

MODE = num mean min max sum;

FMTLIST = width= 5 prcn = 0;

6-385

TABULATE

This generates a table of salary data, with 4 rows, corresponding to four age

groups, by two columns, corresponding to two gender groups. For each gen-

der/age category, five statistics are reported - the count (num), and the mean,

min, max and sum of salaries, with a user specified format. Contingency table

statistics (s) for the age/sex counts are also displayed.

See Also COVA, CROSSTAB, FMTLIST, FREQ, GROUP, TITLE, WEIGHT

6-386

TEST (Parametric)

Purpose To compute diagnostic parametric tests.

Format TEST (options) vlist ;

BOUND = level ;

CENSOR = cenname;

ENDOG = endlist;

INST = instlist;

METHOD = methname;

MODE = modetype;

OPLIST = oplist;

ORDER = order;

PERIODS = periods;

VALUE = value;

VLIST = rlist;

WEIGHT = wtname;

Input options optional, print options.

vlist literal, required, variable or equation list.

level numeric, optional, percentage confidence level. (.95)

cenname literal, optional, censor variable name.

endlist literal, optional, endogenous variable list.

instlist literal, optional, list of instruments.

methname literal, required, diagnostic method.

modetype literal, optional, algorithm.

oplist literal, optional, program options.

order literal, optional, degrees of freedom or maximum lags

periods literal, optional, subsample range.

value literal, optional, restriction values or matrix.

rlist literal, optional, restriction matrix.

wtname literal, optional, weighting variable.

Remarks The TEST command provides a number of parametric diagnostic tests; the

test chosen is given by methname. Parametric tests are based on specific

assumptions about the distribution of the population sampled. These tests

are generally more powerful than non-parametric tests, which do not make

such distributional assumptions.

6-387

TEST (Parametric)

Print options include p — pause after each screen display, and g — display

graph (when available). On-line help (with additional information) is available

for each of these tests. The following tests are currently supported:

AD Anderson-Darling normality test.

ANOVA Analysis of variance test.

ARCH Engle’s Arch test.

BARTLETT Bartlett test for homoscedasticity.

BKW Belsley, Kuh and Walsh SVD test

BP Breusch Pagan test for homoscedasticity.

CHISQ χ2 test.

CHOW Chow stability test.

DF Dickey-Fuller unit root test.

EG Engle-Granger cointegration test.

F F test.

FTEST Linear restriction test.

GRANGER Granger causality test.

HANSEN Hansen test of overidentifying restrictions.

HAUSMAN Hausman specification test.

JB Jarque-Bera normality test.

JOHANSEN Johansen cointegration test.

JTEST Davidson and MacKinnon J-test for restrictions.

KPSS Kpss stationarity test.

LBQ Ljung-Box Q test for autocorrelation.

LM Lagrange multiplier test.

LRT Likelihood ratio test.

NW Newey West D test of restrictions.

PIT Probability integral transformation test.

PPC Probability plot correlation test.

RECURS Structural stability test.

SF Shapiro Francia normality test.

SW Shapiro Wilks normality test.

THEIL Theil decomposition.

TTEST t test.

WALD Wald test.

WELCH Welch (ANOVA) test.

6-388

TEST (Parametric)

AD The Anderson Darling test evaluates whether a series exhibits normal-

ity; it is one of the most powerful statistics for detecting most departures

from normality. It can be used for censored and non-censored data.

The test is a one-sided and the null hypothesis that the series is derived

from a normal population is rejected if the test statistic is greater than

the critical value.

For the censored case, the p-value table can only provide approximate

values. To provide accurate values, a p-value table, specific for the

number of observations and degree of censoring, is generated in place

based on 10,000 replications.

Example
1. TEST (p) y;

METHOD = AD;

2. TEST (p) x ;

METHOD = AD;

CENSOR = cen;

The first example demonstrates how an uncensored vector y can be

tested for normality, while the second shows how a Type 1 right cen-

sored vector x can be similarly tested, where the elements of cen take

the value of unity if the element is censored.

Technical Notes
The Anderson-Darling test is considered parametric because it makes

use of the specific distribution in calculating critical values.

ANOVA The analysis of variance test is a statistical test that is used to

test the hypothesis as to whether the means of two or more popula-

tions are equal when you know that the variance of each population is

the same. Note that it is assumed that each population is distributed

normally. Unmatched samples (ie with missing values) are supported.

The null hypothesis is equal means across populations Under the null

hypothesis, the test statistic is distributed as F.

Example

6-389

TEST (Parametric)

TEST (p) x1 x2 x3;

METHOD = ANOVA;
This example shows how an ANOVA analysis can be carried out on

three variables - x1, x2, and x3.

ARCH The Engle Lagrange Multiplier arch test evaluates whether a series

(typically residuals) exhibits an arch structure by regressing the squared

residuals against lagged squared residuals of order p. The arch statistic

is distributed χ2 with p degrees of freedom.

Example
TEST res;

METHOD = ARCH;

ORDER = 4;
This example demonstrates how a vector res can be tested for an arch

effect, using lags up to order 4.

BARTLETT The Bartlett test is used to test for homogeneity of variances

of k populations. Note that it is assumed that each population is dis-

tributed normally - this test is sensitive to departures from normality.

The null hypothesis is equal variance across populations Under the null

hypothesis, the Bartlett test statistic is distributed as χ2 with k − 1 de-

grees of freedom.

Example
TEST (p) x1 x2 x3;

METHOD = BARTLETT;
This example shows how a Bartlett analysis of variance can be carried

out on three variables - x1, x2, and x3.

BKW The Belsley, Kuh and Walsh singular value decomposition (SVD)

test evaluates the condition indexes and variance decomposition of a

matrix of suitably scaled vectors as a test of multicollinearity.

Each vector is automatically scaled to unit length ie. ‖x‖ = 1. Vectors

consisting of logged data must be e-scaled to have zero mean; this is

undertake for those variables listed in the VLIST option.

6-390

TEST (Parametric)

The first column of the output shows the condition index - the ratio of

the largest singular value to each of the other singular values. A value

greater than 30 is taken to be evidence of strong dependencies between

the variables. The remaining columns show the variance decomposition

matrix; coefficients estimated using these variables are considered de-

graded if more that 50% of the variance of two or more coefficients are

associated with a single high condition index.

Example
TEST x1 x2 x3;

METHOD = BKW;

VLIST = x3;

This example demonstrates how to evaluate the degree of multicollinear-

ity in the matrix consisting of the three vectors x1, x2 and x3. x3 is in

logs, and so is specified in VLIST.

BP The Breusch-Pagan test evaluates whether the residuals in an esti-

mated equation are homoscedastic by undertaking an auxiliary regres-

sion of the squared residuals against a set of explanatory variables. The

BP statistic is distributed χ2 with degrees of freedom equal to the num-

ber of explanatory variables in vlist.

Example
FRML eq1 y c x2 x3;

TEST (p) eq1;

METHOD = BP;

VLIST = c x2 x4;

This example tests for homoscedasticity of the residuals in eq1 based

on the auxiliary regression of the squared residuals against the explana-

tory variables listed in vlist.

CHISQ Gives the probability that χ2 takes a value greater than the value

given in vlist for the degrees of freedom (required) specified in order.

Example
TEST (p) chi;

METHOD = CHISQ;

6-391

TEST (Parametric)

ORDER = 5;

The p value for the scalar, chi, distributed χ2 with five degrees of free-

dom is evaluated.

CHOW The Chow test checks the stability of the regression coefficients

in the model specified in vlist by estimating these coefficients over two

or more subsamples, and evaluating the F-test based on the respective

sum of squares. The specification for the subsamples is given in peri-

ods. If periods consists of k pairs of dates, then the Chow test will be

carried out using k subsamples for the dates specified. If periods is a

group name containing k discrete values, then the Chow test will be car-

ried out using the k subsamples for the specified groups. If periods is a

number, then k optimal break points are computed, where k is the num-

ber of periods specified. Following Quandt, the break points are chosen

so as to maximize the likelihood. The periods are then compared two

by two; thus for k = 4, there will be 6 comparisons. The Goldfeld-Quandt

test for heteroscedasticity is also undertaken.

Example
SMPL 1956 1985;

1. FRML eq1 y c x1 x2;

TEST (p) eq1;

METHOD = CHOW;

PERIODS = 1956 1965 1966 1974 1975 1985;

2. TEST (p) eq1;

METHOD = CHOW;

PERIODS = 3;

These two examples show how a standard Chow test for the stability

of coefficients can be carried out. The first example specifies the three

sub-periods exactly, while in the second, the program selects the three

sub-periods using Quandt’s methodology.

DF The test for a unit root in a time series is basically testing that the

regression of yt on yt−1 yields a coefficient of unity. The Dickey-Fuller

(1979) statistic that is used in this analysis is the t-statistic for the lagged

6-392

TEST (Parametric)

variable for the regression of yt − yt−1 on yt−1, with the inclusion of a con-

stant and a trend term. The null hypothesis that the series has a unit

root (ie. is integrated I(1)) yields a coefficient of zero for yt−1. The t-

statistic is specified in vlist and the number of periods is taken from the

current sample unless specified in periods. The probability levels are

evaluated based on the MacKinnon (1990) response surface estimates,

on the assumption that there is both a constant and a trend term, with

interpolation for intermediate values

Example
SMPL 1950 1990;

GENR ylag = lag(y,1);

GENR dely = y - ylag;

GENR trend = numdate(_ID);

SMPL 1951 1990;

OLS dely c trend ylag;

dfstat = tstat[3];

TEST (p) dfstat;

METHOD = DF;

This example shows how the Dickey-Fuller test can be used to test for

unit roots. A trend variable is created using the NUMDATE command, and

a OLS is carried out as shown. DFSTAT, which is the t-statistic for ylag,

become the argument for the DF test.

EG The test for cointegration between time series is basically testing first

that each is I(1) (ie. has unit roots) using the DF option under TEST,

and second that the linear combination is I(0). This can be evaluated

based on the Engle-Granger (1987) procedure. One time series is re-

gressed against all the others, with the inclusion of a constant and a

trend term. Using the residuals (ε) from this regression, a second re-

gression of εt − εt−1 on εt−1 is carried out, along with the inclusion of a

constant and a trend term. The null hypothesis that the series are coin-

tegrated should yield a coefficient on εt−1 of zero. The t-statistic for this

coefficient is specified in vlist, the number of series in order, and the

number of periods is taken from the current sample unless specified in

periods. The probability levels are evaluated based on the MacKinnon

(1990) response surface estimates, on the assumption that there is both

6-393

TEST (Parametric)

a constant and a trend term, with interpolation for intermediate values.

Example
SMPL 1950 1990;

GENR trend = numdate(_ID);

OLS y c trend x1 x2;

FORCST res;

MODE = resid;

GENR reslag = lag(res,1);

GENR delres = res - reslag;

SMPL 1951 1990;

OLS delres c trend reslag;

egstat = tstat[3];

TEST (p) egstat;

METHOD = EG;

ORDER = 3;

This example tests for cointegration of the three series y, x1, and x2.

It is assumed that a Dickey-Fuller test has already been carried out for

each of these variables, and they have each been shown to be I(1). Af-

ter creating a trend variable, an OLS is carried out with one of the series

as the dependent variable, and the others (and trend and an intercept)

as the explanatory variables. The residuals are created from the first

regression using the FORCST command, with MODE = RESID. After cre-

ating the lagged and differenced residual, a second regression is carried

out. The Engle-Granger measure egstat is the t-statistic on the lagged

residual. The test for cointegration requires that the number of variables

involved (order) be specified . Note that this process should probably be

repeated for x1 and x2 as the LHS variable in the first regression.

F The F statistic is evaluated as:

F =
s1/ f1
s2/ f2

where s1 and s2 are independent χ2 variables with f1 and f2 degrees of

freedom respectively. s1 and s2 are specified in vlist, and the degrees

of freedom (required) are specified in order. Gives the probability that F
takes a value greater than the calculated value for the stated degrees of

6-394

TEST (Parametric)

freedom.

Example
TEST (p) s1 s2;

METHOD = F;

ORDER = df1 df2;

If s1 and s2 were residual sum of squares derived from two subsam-

ples on the same regression, with df1 and df2 degrees of freedom

respectively, then this test would carry out the Goldfeld-Quandt test for

homoscedasticity.

FTEST A set of linear restrictions on the estimated coefficients can be

tested using an F test. Given a set of restrictions:

Rb − q = 0

the measure
(Rb − q)′(RVR′)−1(Rb − q)

j

is distributed as F under the null hypothesis, where V is the sample co-

variance matrix of the estimated coefficients, b, and j is the number of

restrictions. Each row of R is the coefficients in one of the restrictions -

thus R will have j rows. The procedure involves estimating the equation

specified in vlist using OLS, and then undertaking the F test. R is spec-

ified in rlist and q in value. An alternative is to specify two equations

in vlist - the unrestricted and restricted respectively - in which case the

standard F test is undertaken.

Example
FRML eq1 y c x1 x2 x3;

FRML eq2 y c x1;

1. TEST (p) eq1 eq2;

METHOD = FTEST;

2. r = {0 0 1 0,

0 0 0 1};

TEST (p) eq1;

6-395

TEST (Parametric)

METHOD = FTEST

VLIST = r;

VALUE = 0 0;

3. r = {0 0 1 1};

TEST (p) eq1;

METHOD = FTEST

VLIST = r;

VALUE = 1;

These examples show hows how one would test for coefficient restric-

tions. Example 1 shows how one would test for zero coefficients on x2

and x3 by specifying two separate equation names in vlist. Example 2

does the exact same test, but requires that the restrictions be specified

using the VLIST and VALUE options. The third example shows how one

could test for a single restriction - in this case that the sum of the coeffi-

cients on x2 and x3 is unity.

GRANGER Granger’s causality test, or more exactly, Granger’s prece-

dence test, allows a test of whether a movement in one vector (x) pre-

cedes the movement in another vector (y). It does not relate to causality

in the usual sense. A series x fails to Granger cause y if, in a regression

of y on lagged y and lagged x, the coefficients of the latter are zero -

this can be evaluated using a standard F-Test. The number of lags is

specified in ORDER. The first order observations are dropped.

Example
TEST (p) y x;

METHOD = GRANGER;

ORDER = 3;

This example shows how the variable x can be tested to see if it Granger

causes y. Three lags are used. An insignificant F-Statistic (p value >

.05) implies that x fails to cause y.

HANSEN Hansen’s test of overidentifying restrictions is used to test if ex-

cess orthogonality conditions are binding in the context of single equa-

tion instrumental variable estimation. When the number of instrumental

6-396

TEST (Parametric)

variables (orthogonality conditions) exceeds the number of parameters

to be estimated, the model is overidentified. The value of the minimum

distance (the quadratic form) is specified in vlist and the number of re-

strictions - the difference between the number of instruments and the

number of parameters - in order. Under the null hypothesis, in which

the overidentifying conditions are not binding, the quadratic form is dis-

tributed as χ2 with order degrees of freedom.

Example
FRML eq1 y c x1 x2 x3;

2SLS eq1;

INST = c x2 x3 z1 z2 z3;

TEST (p) qf;

METHOD = HANSEN;

ORDER = 2;

This example shows how the overidentifying restrictions are tested in a

previous 2SLS estimation. qf is the value of the minimum distance, and

there are two degrees of freedom (6 instruments minus 4 parameters).

HAUSMAN Hausman’s specification test is a general test for testing the

hypothesis of no misspecification in the model - that is the RHS vari-

ables are independent of the residuals. The procedure involves first

estimating the equation specified in vlist using OLS, and then estimating

it using 2SLS with the instruments (required) in instlist. A Wald test is

undertaken on the difference of the coefficients.

Example
FRML eq1 y c x1 x2 x3;

TEST (p) eq1;

METHOD = HAUSMAN;

INST = c x1 z1 z2 z3;

This example shows how the variables x2 and x3 are jointly tested for

independence from the residual, using the Hausman procedure.

JB The Jarque Bera test evaluates whether a series with zero mean

exhibits normality based on its skewness and kurtosis. Under the null

hypothesis of normality, the JB statistic is distributed χ2 with 2 degrees

6-397

TEST (Parametric)

of freedom.

Example
TEST (p) vseries;

METHOD = JB;

This example demonstrates how a vector vseries can be tested for

normality.

JOHANSEN The Johansen Maximum Likelihood procedure allows one to

determine the number of cointegrating relationships that exist amongst

the stated endogenous variables. GAUSSX evaluates the maximum eigen-

value test and the trace test for a system of equations using the error

correction representation (ECM) of the VAR(k) model:

∆xt = µ + Bzt +

k−1∑
i=1

Γi∆xt−i + Πxt−k

In addition, GAUSSX reports β, the matrix of orthogonalized eigen vec-

tors (the coefficients in the error correction mechanism), α = S 0kβ, and

the reduced rank long run matrix Π = αβ′ for all possible ranks.

The number of cointegrating relationships is determined by evaluating

the rank (r) of Π. For both the maximum eigen value test and the

trace test, the number of cointegrating vectors is determined sequen-

tially. Starting at r = 0, evaluate if the null hypothesis of no cointegrating

vectors is rejected. If so, test the next hypothesis that there is at most

one cointegrating vector (r ≤ 1), and so on. If r = 0 cannot be rejected,

there are no cointegrating relationships among the xt; if r = k cannot

be rejected, the hypothesis that xt is stationary cannot be rejected; if

0 < r < k the hypothesis of cointegration cannot be rejected, and r indi-

cates the number of cointegrating relationships.

In the unrestricted case of no cointegrating vectors, r = k, and Π is eval-

uated using all the columns of α and β. Under cointegration, r < k, the

reduced rank long run matrix Π is evaluated using the first r columns of

α and β.

6-398

TEST (Parametric)

The functional form of the system is given in the equation specified in

vlist this is similar to the VAR command, except that the error corrected

representation is estimated. Each of the endogenous variables is spec-

ified using the ENDOG option, and the maximum order of the lags is

given by ORDER. While all the endogenous variables are transformed

to differences, the remaining variables (constant and weakly exogenous

variables) are in levels. The type of analysis undertaken is given in the

MODE option:

NOTREND No deterministic trends in the endogenous variables, and

no trend term in the DGP - thus µ = 0.

ECMTREND Linear deterministic trends in the endogenous variables,

and no trend term in the DGP.

GPTREND Linear deterministic trends in the endogenous variables,

and in the DGP.

The default is NOTREND if there is no constant, and DGPTREND if there is

a constant in the FRML. Note that the tabulated values for the maximal

eigen value and trace test are not necessarily valid if there are exoge-

nous variables in the ECM.

Example
FRML eq1 lgnp lpid lcon c;

TEST (p) eq1;

METHOD = johansen;

ENDOG = lgnp lpid lcon;

ORDER = 4;

This carries out the Johansen procedure on the ECM specified by eq1.

In this example, a system with 3 endogenous variables is specified, with

the order of the underlying VAR model set to 4. Since a constant is spec-

ified in the FRML, the default is trend in the variables and in the DGP.

JTEST The Davidson and MacKinnon (1981) J-test is applied to the two

equations specified in vlist. The procedure allows one to test between

two non-nested linear models. (In the nested case, this can be achieved

simply by using an F-test). The J-test consists of estimating each model

(M1, M2), and deriving the fitted value of the dependent variable. Then

model 1 is again estimated with the fitted value from model 2 as an addi-

6-399

TEST (Parametric)

tional explanatory variable, and model 2 with the fitted value from model

1. The reported J-statistic for each model is the corresponding t-statistic

of the fitted value.

Example
FRML eq1 y c x1 x2 x3;

FRML eq2 y c x1 x4 x5;

TEST (p) eq1 eq2;

METHOD = JTEST;

This example shows how the J-test is carried out on the two non-nested

equations eq1 and eq2.

KPSS The KPSS test assumes that one can decompose a series into the

sum of a deterministic trend, a random walk, and a stationary error. Un-

der the null hypothesis that the series is level stationary or trend station-

ary, the variance of the random walk component will be zero. The KPSS

procedure generates a one sided Lagrange Multiplier statistic to test the

variance. This is done both for level stationarity (no trend term) and

trend stationarity. Autocorrelation in the series is permitted by testing for

differenced stationarity - the maximum order of correlation is specified

in order.

Example
TEST gnp;

METHOD = KPSS;

ORDER = 8;

This example demonstrates how a vector gnp can be tested for station-

arity, using lags up to order 8.

LBQ The Ljung Box Q test can be used to evaluates whether autocorre-

lation exists in a series. Two outputs are produced:

1. Autocorrelation function. This shows the sequence of correlation

between members of a single stochastic process. Thus the kth

coefficient shows the correlation between yt and yt−k. The Ljung-

Box statistic is distributed χ2 with k degrees of freedom under the

null hypothesis.

2. Partial Autocorrelation function. The kth order partial autocorrela-

6-400

TEST (Parametric)

tion coefficient measures the correlation between yt and yt−k not

accounted for by an AR(k− 1) process. The sequence is the Partial

Autocorrelation function. Under the null hypothesis of an AR pro-

cess of order k, the test statistic is distributed approximately nor-

mally.

Example
TEST x1 ;

METHOD = LBQ;

PERIODS = k;

The correlogram and partial autocorrelogram for x1 are displayed, using

k lags.

LM The Lagrange multiplier test is a general test for testing the restric-

tions imposed on a model when only the restricted model can be es-

timated. The model can be linear or non-linear, and can consist of a

single or multiple equations. If the restrictions are valid, the slope of the

likelihood function should be near zero at the restricted estimate.

The LM statistic is evaluated as:

LM = ∂L/∂θ′I−1∂L/∂θ

where ∂L/∂θ is the slope of the log likelihood with respect to the pa-

rameter vector, θ, and I is the information matrix. These elements are

evaluated at the restricted parameter values. Under the null hypothesis

that the restrictions are valid, LM is distributed as χ2 with order degrees

of freedom, where order is the number of restrictions.

Example
FRML eq1 y = (1/gamma(rho))*(b+x)ˆ(-rho)

.*yˆ(rho-1).*exp(-y./(b+x));

FRML es1 rho == 1;

PARAM b rho;

VALUE = 10 1;

ML eq1;

EQCON = es1;

TEST (p) gradvec;

METHOD = LM;

ORDER = 1;

6-401

TEST (Parametric)

VALUE = vcov;

This example shows how parameter restrictions can be tested for in a

non-linear context, using the Lagrange multiplier test. The unrestricted

model (a general gamma distribution) has a restricted form (an exponen-

tial density) when rho is restricted to unity. gradvec and vcov are the

likelihood gradient and parameter covariance matrix respectively from

the previous ML command. Since there is one restriction, ORDER is set

to unity.

LRT The likelihood ratio test is a general test for testing the restrictions

imposed on a model. The model, which can be linear or non-linear,

and consist of a single or multiple equations, is first estimated without

any restrictions. The model is then re-estimated with the restrictions in

place. The LRT statistic is evaluated as:

LRT = 2(LLF1 − LLF2)

where LLF1 is the unconstrained log likelihood and LLF2 is the con-

strained log likelihood. LLF1 and LLF2 are specified in vlist, and the

number of restrictions in order. Under the null hypothesis, LRT is dis-

tributed as χ2 with order degrees of freedom.

Example
FRML eq1 y = a*ln(y-r) + b*x1 + c*x2;

PARAM a r b c;

NLS eq1;

llr1 = llf;

CONST b c;

VALUE = 0 0;

NLS eq1;

llr2 = llf;

TEST (p) llr1 llr2;

METHOD = LRT;

ORDER = 2;

This example shows how parameter restrictions can be tested for in a

non-linear context, using the likelihood ratio test. The unrestricted log-

likelihood is stored in llr1, and the restricted in llr2. The degrees of

freedom for the LRT test, given in order, is two since there are two re-

6-402

TEST (Parametric)

strictions.

NW The Newey West D statistic is evaluated as:

NW = (q0 − q1)

where q1 is the unconstrained value of the minimum distance estimator

(quadratic form) evaluated in a 2SLS, 3SLS or GMM estimation, and q0
is the constrained value of the minimum distance estimator. Under the

null hypothesis that the restrictions are true, NW is distributed as χ2 with

order degrees of freedom.

Example
FRML eq1 y c x1 x2 x3 x4;

FRML eq2 y c x1 x2 ;

2SLS eq1;

INST = c x2 z1 z2 z3 z4 z5 z6;

q1 = qf;

2SLS eq2;

INST = c x2 z1 z2 z3 z4 z5 z6;

q0 = qf;

TEST (p) q1 q0;

METHOD = NW;

ORDER = 2;

This example shows how parameter restrictions can be tested for in an

instrumental variables context, using the Newey West D test. The un-

restricted minimum distance (quadratic form) is stored in q1, and the

restricted in q0. The degrees of freedom for the NW test, given in order,

is two since there are two restrictions.

PIT This test is designed to test the distributional assumption of a pre-

vious survival estimation. If the distributional assumptions are correct,

then the cdf (or equivalently the survival rate) is distributed uniformly.

The PIT test generates the probability plot correlation PPC of the proba-

bility integral transformation of a data set, as well as the standard error

(using the delta process). Under the null hypothesis that the data has

the specified distribution, the transform is distributed uniform. The p-

6-403

TEST (Parametric)

value is the probability that the correlation coefficient is smaller than the

value shown under the null.

The critical values for the uniform distribution are derived on the as-

sumption of known coefficients. Consequently, since the transformation

is undertaken with estimated coefficients, the reported p-values, while

asymptotically correct, are biased high in small samples. The PIT test

reports both the actual and the 95%lower and upper bounds of the cor-

relation coefficient with their respective p-values. Since the true p-value

falls between the actual and lower bound values, the null hypothesis is

rejected if the lower bound p-value is less than 0.05. The confidence

level can be changed using the BOUND option.

Example

FRML eq0 indx = b0 +b1*arrtemp + b2*plant;

FRML eq1 llfn = lognorm(fail,indx,scale);

FRML eq2 llfn = lognorm(fail˜cen,indx,scale);

1. ML (p,i) eq0 eq1;

TEST (p) fail;

METHOD = PIT;

2. ML (p,i) eq0 eq2;

TEST (p) fail;

METHOD = PIT;

CENSOR = cen;

The first example demonstrates how an the PIT test can be used for

the uncensored vector fail. After estimating the coefficients using ML,

the PIT test evaluates the survival rate using the estimated coefficients,

and then evaluates the probability plot correlation coefficient based on

a uniform reference distribution. Thus this test will determine if the as-

sumption of log normality can be rejected.

The second shows how a Type 1 right censored vector fail can be sim-

ilarly tested, where the elements of cen take the value of unity if the

element is censored. Note that the ML estimation has to be undertaken

6-404

TEST (Parametric)

using the censored data.

PPC This test is designed to compare a data vector with a number of dif-

ferent distributions, in order to ascertain the family that the sample most

likely came from. The PPC test is a measure of the linearity of a proba-

bility plot. If the sample tested is actually drawn from the hypothesized

distribution, then the plot will be nearly linear, and the correlation co-

efficient will be close to unity. The test can be used for censored and

non-censored data.

The PPC test generates the probability plot correlation coefficient for the

sample, evaluated against 14 reference distributions. The one tailed

critical values for each distribution are reported. In addition, the optimal

value of λ from the Tukey-Lambda distribution is also reported.

The following table shows the transformations used in PPC:

Distribution Variate Reference

Cauchy y Cauchy

Expon y Expon

Gumbel −y SEV

Laplace y Laplace

Levy ln(y) ln Levy

Logistic y Logistic

Loglog ln(y) Logistic

Lognorm ln(y) Normal

Normal y Normal

Pareto ln(y) Expon

Power − ln(y) SEV

SEV y SEV

Uniform y Uniform

Weibull ln(y) SEV

In the default, the data is evaluated against all 14 reference distribu-

tions. Specific distributions can be tested by using the MODE option in

which case a Q-Q plot will be generated for each distribution if the ’g’

output option is specified.

6-405

TEST (Parametric)

Example
1. TEST (p) x;

METHOD = PPC;

2. TEST (p) x;

METHOD = PPC;

CENSOR = cen;

3. TEST (p,g) x;

METHOD = PPC;

MODE = uniform normal;

The first example demonstrates how the PPC test can be used for the

uncensored vector y, while the second shows how a Type 1 right cen-

sored vector x can be similarly tested, where the elements of cen take

the value of unity if the element is censored.

The third example demonstrates how a probability plot correlation test

for two distributions is carried out on a vector x. For each distribution, a

Q-Q plot is produced.

Technical Notes
The critical points were derived for each distribution based on 10,000

replications, using the Hazen order statistic for plotting position. For the

uniform case, the Weibull order statistic is used.

RECURS Recursive residuals are used to perform various tests of struc-

tural stability. The residuals are estimated on the equation specified in

vlist. The following tests are carried out and p values reported:

• CUSUM. This test is based on the cumulative sum of standardized

recursive residuals. Under the null of no structural change in the

parameters, the expected value of CUSUM is zero.

• CUSUMSQ. This test is based on the cumulative sum of squared

recursive residuals. Like CUSUM, this tests for structural change in

the parameters.

• t-test. Since recursive residuals under the null hypothesis of no

misspecification are iid normal with zero mean, the mean divided

by the standard error is distributed as t.

6-406

TEST (Parametric)

• Runs test. This is a nonparametric test to assess serial correlation.

It is based on the number of runs in which the recursive residuals

maintain the same sign.

• Wilcoxon. This is also a nonparametric test for serial correlation, in

which the test statistic is based on the sum of the ranked differences

between successive terms.

• Von Neumann. This is a test for serial correlation, which is arith-

metically very similar to the Durbin-Watson test. GAUSSX uses the

significance points for the modified von Neumann ratio computed

by Press and Brooks (Johnston, 1984), with interpolation for inter-

mediate values.

Neither CUSUM nor CUSUMSQ has a test statistic; rather GAUSSX plots

the 95% confidence bounds in each case so that violations can be seen

graphically. A number of graphic displays are possible using recursive

residuals, and these can be specified using the OPLIST option. These

graphs are:

• RESID: Recursive residuals.

• CUSUM: Cumulative sum of recursive residuals.

• CUSUMSQ: Cumulative sum of squared recursive residuals.

• RCOEFF: Recursive estimates of each coefficient.

• FDIFF: First difference of the recursive estimate of each co-

efficient.

• ALL: All the above.

• FORWARD: Forward recursive residuals only.

• BACKWARD: Backward recursive residuals only.

Example
FRML eq1 y c x1 x2;

TEST (p) eq1;

METHOD = RECURS;

OPLIST = resid cusum cusumsq;

This example will carry out the recursive residual tests on eq1. It will

also produce graphic output showing the recursive residuals, as well as

the CUSUM and CUSUMSQ tests, for both forward and backward recursive

residuals.

6-407

TEST (Parametric)

SF The Shapiro Francia test is used to test for the normality of a series,

and is powerful against a variety of alternatives. It is best for leptokurtic

(heavy tailed) samples. It can be used for censored and non-censored

data.

The test is a one-sided and the null hypothesis that the series is derived

from a normal population is rejected if the test statistic is less than the

critical value. Critical values are restricted to sample sizes of less than

5000.

Example
1. TEST (p) y;

METHOD = SF;

2. TEST (p) x ;

CENSOR = cen;

METHOD = SF;

The first example demonstrates how an uncensored vector y can be

tested for normality, while the second shows how a Type 1 right cen-

sored vector x can be similarly tested, where the elements of cen take

the value of unity if the element is censored.

SW The Shapiro Wilks test is used to test for the normality of a series, and

is powerful against a variety of alternatives. It is best for platykuric (thin

tailed) samples. It can be used for censored and non-censored data.

The test is a one-sided and the null hypothesis that the series is derived

from a normal population is rejected if the test statistic is less than the

critical value. Critical values are restricted to sample sizes of less than

5000.

Example
1. TEST (p) y;

METHOD = SW;

2. TEST (p) x;

CENSOR = cen;

METHOD = SW;

6-408

TEST (Parametric)

The first example demonstrates how an uncensored vector y can be

tested for normality, while the second shows how a Type 1 right cen-

sored vector x can be similarly tested, where the elements of cen take

the value of unity if the element is censored.

THEIL Theil’s decomposition is applied to two series, specified in vlist.

The first variable is the actual series, while the second variable is the

predicted series. Output includes the MSE, Theil’s inequality coefficient,

and two decompositions. Weighted analysis is available by using the

WEIGHT option.

Example
TEST (p) act pred;

METHOD = THEIL;

This example shows how Theil’s decomposition analysis can be carried

out on two variables - act and pred.

TTEST The t-test is used to test the equality of a single coefficient with

some specified value. The t statistic is evaluated as:

t =
∣∣∣∣∣b − βs

∣∣∣∣∣
where b is observed value, β is the population mean, and s is the sam-

ple standard error. b and s are specified in vlist, β is specified in value,

and the degrees of freedom (required) is specified in order. If no VALUE

option is specified, β is set to zero. Gives the probability that |t| takes a

value greater than the calculated value for the stated degrees of free-

dom. This is thus a two-tailed test.

Example
TEST (p) 1.5 .4;

METHOD = TTEST;

VALUE = 1;

ORDER = 15;

This example shows how a t-test is carried out for the observed value of

a parameter (1.5) and standard error (.4), against an expected value of

unity, with 15 degrees of freedom.

6-409

TEST (Parametric)

WALD The Wald test is a general test for testing the restrictions imposed

on a model. The model, which can be linear or non-linear, and consist

of a single or multiple equations, is estimated without any restrictions.

The WALD statistic is evaluated as:

W = [c(θ̂) − q]′(Var[c(θ̂) − q])−1[c(θ̂) − q]

where

c(θ̂) = q

is a set of restrictions imposed on the vector of parameter estimates, θ̂.

These restrictions are evaluated at the unrestricted parameter values.

Under the null hypothesis that the restriction is true, W is distributed as

χ2 with m degrees of freedom, where m is the number of restrictions. In

GAUSSX, a Wald test is carried out using the ANALYZ command.

Example
FRML eq1 q = a0*lˆa1*kˆa2;

PARAM a0 a1 a2;

NLS eq1;

FRML cq1 crstst = a1+a2-1;

TEST (p,d) cq1;

METHOD = WALD;

This example shows how parameter restrictions can be tested for in a

non-linear context, using the Wald test. The unrestricted Cobb-Douglas

production function is estimated using NLS. A test for constant returns to

scale is then undertaken by using the TEST command on the constraint

equation cq1, under the null hypothesis that crstst is zero. See the

ANALYZ command for full details – the two forms are equivalent.

WELCH Welch’s test is used to test the hypothesis as to whether the

means of two or more populations are equal when you know that each

population is distributed normally, but the variance of each population

is different. (ANOVA assumes each population has the same variance).

Unmatched samples (ie. with missing values) are supported. The null

hypothesis is equal means across populations Under the null hypothe-

sis, Welch’s test statistic is distributed as F.

6-410

TEST (Parametric)

Example
TEST (p) x1 x2 x3;

METHOD = WELCH;

This example shows how an ANOVA can be carried out on three variables

- x1, x2, and x3 when the variance differs across population.

It is very easy for the user to program additional tests, by using the exist-

ing tests as templates – see, for example the files testx.src, test2.src and

test3.src on \gsx\gaussx. Examples of TEST are given in test14.prg, test52.prg

and test61.prg.

See Also COVA

References Anderson, T. W.; Darling, D. A. (1952). “Asymptotic theory of certain goodness-

of-fit criteria based on stochastic processes”. Annals of Mathematical Statis-

tics, Vol. 23, pp. 193-212.

Bartlett, M.S. (1937), “Properties of Sufficiency and Statistical Tests” Pro-

ceedings of the Royal Society of London, Series A Vol.160, pp. 268 -282.

Belsley, D., E. Kuh, and R. Welsch (1980), Regression Diagnostics: Identify-

ing Influential Data and Sources of Collinearity, John Wiley and Sons, New

York.

Breusch, T.S. and A.R. Pagan (1979), “A Simple Test for Heteroscedasticity

and Random Coefficient Variation”, Econometrica, Vol. 47, pp. 1287-1294.

Brown, R., J. Durbin and J. Evans (1975), “Techniques for Testing the Con-

stancy of Regression Relationships over Time”, Journal of the Royal Statisti-

cal Society, Series B, Vol. 37, pp. 149-172.

Chow, G.C. (1960), “Tests of equality between sets of coefficients in two linear

regressions”, Econometrica, Vol. 28, pp. 591-605.

Davidson, J. and J. MacKinnon (1981), “Several Tests for Model Specification

in the Presence of Alternative Hypotheses”, Econometrica, Vol. 49, pp. 781-

793.

6-411

TEST (Parametric)

Dickey, D., and W. Fuller (1979), “Distribution of the Estimators for Autore-

gressive Time Series with a Unit Root”, Journal of the American Statistical

Association, Vol. 74, pp. 427-431.

Engle, R. (1982), “Autoregressive Conditional Heteroscedasticity with Esti-

mates of the Variance of United Kingdom Inflations”, Econometrica, Vol. 50,

pp. 987-1008.

Engle, R., and C. Granger (1987), “Co-integration and Error Correction: Rep-

resentation, Estimation and Testing”, Econometrica, Vol. 35, pp. 251-276.

Goldfeld, S., and R. Quandt (1965), “Some Tests for Homoscedasticity”, Jour-

nal of the American Statistical Association, Vol. 60, pp. 539-547.

Goldfeld, S., and R. Quandt (1972), Nonlinear Methods in Econometrics, Am-

sterdam, North Holland.

Granger, C.W.J. (1969), “Investigating Causal Relations by Econometric Mod-

els and Cross-Spectral Methods”, Econometrica, Vol. 37, pp.24-36.

Hansen, L.P. (1982), “Large Sample Properties of Generalized Method of

Moments Estimators”, Econometrica, Vol 50, pp. 1029-1054.

Hausman, J.A. (1978), “Specification Tests in Econometrics”, Econometrica,

Vol. 46 (6), pp. 1251-1271.

Jarque, C.M., and A.K. Bera (1980), ”Efficient tests for normality, homoscedas-

ticity and serial independence of regression residuals”, Economic Letters,

Vol. 6, pp. 255-259.

Johansen, S. (1988), “Statistical Analysis of Cointegration Vectors”, Journal

of Economic Dynamics and Control, Vol. 12, pp. 231-254.

Johnston, J. (1984), Econometric Methods, 3rd ed., McGraw Hill, New York.

Kwiatowski, D., P.C.B. Phillips, P. Schmid and T. Shin (1992), “Testing the null

hypothesis of stationarity against the alternative of a unit root: How sure are

we that economic series have a unit root”, Journal of Econometrics, Vol. 54,

pp. 159-178.

6-412

TEST (Parametric)

Ljung, G. and G. Box (1979), “On a Measure of Lack of Fit in Time Series

Models”, Biometrika, Vol. 66, pp. 265-270.

Newey, W. and K. West (1987) “Hypothesid Testing with Efficient Method of

Moments Estimation”, International Economic Review, Vol 28, pp. 777-787.

Royston, P (1993), “A toolkit for testing for non-normality in complete and

censored samples” The Statistician, Vol 42, pp. 37-43.

Theil, H. (1971), Principles of Econometrics, New York, Wiley.

Welch, B.L. (1951), “On the comparison of several mean values: An alterna-

tive approach.” Biometrika, Vol. 38, pp. 330-336.

6-413

TEST (Non-Parametric)

Purpose To compute diagnostic non-parametric tests.

Format TEST (options) vlist ;

METHOD = methname;

VALUE = value;

Input options optional, print options.

vlist literal, required, variable list.

methname literal, required, diagnostic method.

value literal, optional, restriction values or matrix.

Remarks The TEST command provides a number of non-parametric diagnostic tests;

the test chosen is given by methname. Non-Parametric tests do not require

specific assumptions about the distribution of the population sampled. The

assumption most frequently required is that the population is continuous.

For location type tests, a single vector can be compared to a constant by

specifying the single vector in vlist, and the constant in value.

The (p) option generates a pause after each screen of output. On-line help

(with additional information) is available for each of these tests. The following

tests are currently supported:

Location

Indep samples

KW Kruskal-Wallis test.

MOOD Mood’s (median) test.

MW Mann-Whitney U test.

Location

Related samples

CONOVER Conover test.

FRIEDMAN Friedman test.

SIGN Sign test.

WALSH Walsh test.

WILCOXON Wilcoxon signed rank test.

6-414

TEST (Non-Parametric)

Scale

BF Brown-Forsythe test.

LEVENE Levene test.

OBRIEN O’Brien test.

Characteristics

KS Kolmogorov-Smirnov test.

KURTOSIS Kurtosis test.

RUNS Runs test.

SKEWNESS Skewness test.

BF The Brown-Forsythe test is used to test for homogeneity of variances

of k populations. The data transformation used in the Brown-Forsythe

test is:

yi j =
∣∣∣xi j −median(x j)

∣∣∣
The use of the median makes the test more robust for small samples.

Note that it is assumed that each population is continuous, but not

necessarily normally distributed. The null hypothesis is equal variance

across populations. Under the null hypothesis, the Brown-Forsythe test

statistic is distributed as F.

Example
TEST (p) x1 x2 x3;

METHOD = BF;

This example shows how a Brown-Forsythe analysis of variance can be

carried out on three variables - x1, x2, and x3.

CONOVER The Conover test is a non-parametric test for analyzing ran-

domized complete block designs. The concept is that there are k treat-

ments applied to n subjects - for example k judges with n participants.

The null hypothesis is that there is no difference between treatments

(equal location), that is, each treatment has the same effect (no biased

judges). Under the null hypothesis, the Conover test statistic is dis-

tributed as F.

Example

6-415

TEST (Non-Parametric)

TEST (p) x1 x2 x3;

METHOD = CONOVER;

This example shows how a Conover test can be used to test whether

x1, x2, and x3 have the same median.

FRIEDMAN The Friedman test is a non-parametric test for analyzing ran-

domized complete block designs. The concept is that there are k treat-

ments applied to n subjects - for example k judges with n participants.

The null hypothesis is that there is no difference between treatments

(equal location), that is, each treatment has the same effect (no biased

judges). Under the null hypothesis, the Friedman test statistic is dis-

tributed as χ2 with k − 1 degrees of freedom.

Example
TEST (p) x1 x2 x3;

METHOD = FRIEDMAN;

This example shows how a Friedman test can be used to test whether

x1, x2, and x3 have the same median.

KS The Kolomogorov-Smirnov test is used to test whether a series comes

from a specified distribution. The series must be a CDF or a survival

rate. This is a nonparametric test which tests the null hypothesis that

the series is indeed a cumulative distribution, and thus has a uniform

distribution. Under the null hypothesis, the (corrected) Kolomogorov-

Smirnov statistic is distributed normal.

Example
GENR sv = 1 - cdfn((y-indx)/sig);

TEST (p) sv;

METHOD = KS;

This example shows how a survival rate sv is created from a series y

under the assumption that y is distributed normal. This assumption can

then be tested using the Kolomogorov-Smirnov test.

KW The Kruskal-Wallis test is a nonparametric test to compare three or

more samples. It tests the null hypothesis that all populations have iden-

tical distribution functions against the alternative hypothesis that at least

6-416

TEST (Non-Parametric)

two of the samples differ only with respect to location (median), if at all.

It is the nonparametric analog to the F-test used in analysis of variance,

and is a logical extension of the Mann-Whitney Test. Under the null hy-

pothesis, the (corrected) Kruskal-Wallis statistic is distributed as χ2 with

k − 1 degrees of freedom.

Example
TEST (p) x1 x2 x3;

METHOD = KW;

This example shows how a Kruskal-Wallis test can be used to test

whether x1, x2, and x3 have the same median.

KURTOSIS The kurtosis test is used to ascertain the value of the kurto-

sis of a series, and its significance. Kurtosis characterizes the relative

peakedness or flatness of a distribution compared to the normal dis-

tribution. Thus the normal distribution has a kurtosis of zero, and is

referred to as mesokurtic. Positive kurtosis indicates a relatively peaked

distribution (leptokurtic), while negative kurtosis indicates a relatively flat

distribution (platykurtic).

Under the null hypothesis that the series is mesokurtic, the kurtosis test

statistic is distributed normal.

Example
TEST (p) x;

METHOD = KURTOSIS;

This example evaluates the kurtosis of x, and evaluates the p value for

the null that the series is mesokurtic.

LEVENE The Levene test is used to test for homogeneity of variances of

k populations. The data transformation used in the Levene test is:

yi j =
∣∣∣xi j −mean(x j)

∣∣∣
Note that it is assumed that each population is continuous, but not

necessarily normally distributed. The null hypothesis is equal variance

across populations. Under the null hypothesis, the Levene test statistic

is distributed as F.

6-417

TEST (Non-Parametric)

Example
TEST (p) x1 x2 x3;

METHOD = LEVENE;

This example shows how a Levene analysis of variance can be carried

out on three variables - x1, x2, and x3.

MW The Mann-Whitney test (U statistic) is a ranked based non parametric

test for analyzing the equality of two population medians. This test is a

nonparametric alternative to the two-sample t-test - it tests whether the

two population distribution functions are identical against the alternative

that they differ by location. The null hypothesis is equal medians across

populations.

Example
TEST (p) x1 x2;

METHOD = MW;

This example shows how a Mann-Whitney U test can be used to test

whether x1 and x2 have the same median.

MOOD Mood’s test (or Median test) is a non-parametric test for analyz-

ing the independence of k groups of data, based on the medians. The

null hypothesis is that there is no difference between the samples - they

come from a population having the same median. Under the null hy-

pothesis, Mood’s test statistic is distributed as χ2 with k − 1 degrees of

freedom.

Example
TEST (p) x1 x2 x3;

METHOD = MOOD;

This example shows how Mood’s test can be used to test whether x1,

x2, and x3 have the same median.

OBRIEN The O’Brien test is used to test for homogeneity of variances of

k populations. It is similar to the Levene test, but is more robust. Note

that it is assumed that each population is continuous, but not necessar-

ily normally distributed. The null hypothesis is equal variance across

populations. Under the null hypothesis, the O’Brien test statistic is dis-

6-418

TEST (Non-Parametric)

tributed as F.

Example
TEST (p) x1 x2 x3;

METHOD = OBRIEN;

This example shows how an O’Brien analysis of variance can be carried

out on three variables - x1, x2, and x3.

RUNS The runs test is a non-parametric test for evaluating whether a sin-

gle vector is non-random, by testing the order of observations in a sam-

ple. The null hypothesis is that the observations are random.

Example
TEST (p) x1;

METHOD = RUNS;

This example shows how a test of the randomness of the elements of

x1 is carried out.

SKEWNESS The skewness test is used to ascertain the value of the skew-

ness of a series, and its significance. Skewness characterizes the de-

gree of asymmetry of a distribution around its mean - thus a normal

distribution has a skewness of zero. Positive skewness indicates a dis-

tribution with an asymmetric tail extending towards more positive values.

Negative skewness indicates a distribution with an asymmetric tail ex-

tending towards more negative values.

Under the null hypothesis that the series is sampled from a symmetrical

distribution, the skewness test statistic is distributed normal.

Example
TEST (p) x1;

METHOD = SKEWNESS;

This example evaluates the skewness of x, and evaluates the p value

for the null that the series is symmetrically distributed.

SIGN The Sign test is used to test the difference between the medians of

two populations. Since the differences between each pair of observa-

tion is used, the test is particularly appropriate for matched pairs, where

6-419

TEST (Non-Parametric)

the pairs are observed under widely different conditions. It can also be

used for ordinal data. The null hypothesis is that the medians of two

samples are equal. Under the null hypothesis, the Sign test statistic has

a binomial distribution.

Example
TEST (p) x1 x2;

METHOD = SIGN;

This example shows how a Sign test can be used to test whether x1 and

x2 have the same median.

WALSH The Walsh Average (Modified Wilcoxon) test is used to test the

difference between the median of two populations. Since the differences

between each pair of observation is used, the test is particularly appro-

priate for matched pairs, where the pairs are observed under widely

different conditions. The test is similar to the Wilcoxon Signed Rank

test, but uses averages of pairs of differences. The null hypothesis is

that the medians of two samples are equal.

Example
TEST (p) x1 x2;

METHOD = WALSH;

This example shows how a Walsh test can be used to test whether x1

and x2 have the same median.

WILCOXON The Wilcoxon Signed Rank test is used to test the difference

between the median of two populations. Since the differences between

each pair of observation is used, the test is particularly appropriate for

matched pairs, where the pairs are observed under widely different con-

ditions. This test can also be applied when the observations in a sample

of data are ranks, that is, ordinal data rather than direct measurements.

The Wilcoxon Signed Rank test is more powerful than the Sign test. The

null hypothesis is that the medians of two samples are equal - that is the

median of paired differences is zero.

Example
TEST (p) x1 x2;

6-420

TEST (Non-Parametric)

METHOD = WILCOXON;

This example shows how a Wilcoxon signed rank test can be used to

test whether x1 and x2 have the same median.

A set of examples for non-parametric tests is given in test52.prg.

References Brown, M.B. and A.B. Forsythe (1974), “Robust Tests for the Equality of Vari-

ances”. JASA, Vol. 69, pp. 364-367.

Conover, W.J. (1980), Practical Nonparametric Statistics, Second Edition,

New York, John Wiley & Sons, Inc.

Friedman, M. (1937), “The use of ranks to avoid the assumption of normality

implicit in the analysis of variance”, JASA, Vol. 32, pp. 675-701.

Kruskal, W.H. and W.A. Wallis (1952), “Use of ranks in one-criterion variance

analysis”. JASA Vol.47, pp. 583-621.

Levene, H. (1960), “Robust Tests for the Equality of Variance”, Contributions

to Probability and Statistics, ed. I. Olkin, Palo Alto, CA. Stanford University

Press, pp 278 -292.

Mann, H.B., and D.R. Whitney (1947), “On a test of whether one of two ran-

dom variables is stochastically larger than the other” Annals of Mathematical

Statistics, Vol. 18, pp. 50-60.

Mood, A.M. (1954), Introduction to the theory of statistics. New York: McGraw

Hill.

O’Brien, R.G. (1979), “A General ANOVA Method for Robust Tests of Additive

Models for Variances”, JASA Vol. 74, pp. 877-880.

Walsh, J.E. (1949), “Application of some significance tests for the median

which are valid under very general conditions”, JASA, Vol. 44, pp. 342-355.

Wilcoxon, F (1945), “Individual Comparisons by Ranking Methods”, Biomet-

rics, Vol 1, pp. 80-83.

6-421

TGARCH Process

Purpose Creates a vector of log likelihoods for a truncated GARCH process (GJR).

Format z = TGARCH (resid, avec, bvec, gvec);

z = TGARCH T (resid, avec, bvec, gvec, dvec);

Input resid literal, vector of residuals.

avec literal, vector of parameters for the ARCH process.

bvec literal, vector of parameters for the GARCH process.

gvec literal, vector of γ parameters.

dvec literal, distributional parameter (ν).

Output z Vector of log likelihoods.

ht Vector of conditional variance.

Remarks The structural coefficients and the coefficients of the TGARCH process are

estimated using maximum likelihood. The TGARCH or GJR model is given by:

yt = f (xt, θ) + εt
εt ∼ N(0, ht)

λit = γi if and only if εt−i < 0

ht = α0 +
∑
i=1

(αi + λit)ε2t−i +
∑
j=1

β jht− j

The first equation describes the structural part of the model; thus this can be

used for linear or non-linear structural models. The second equation specifies

the distribution of the residuals, and the third equation specifies the structural

form of the conditional variance ht. The α are the vectors of the weights for

the lagged ε2 terms; this is the ARCH process. The β are the weights for the

lagged h terms; this is the GARCH process.

avec is a vector of parameters giving the weights for the lagged asymmetric

squared residuals. The first element, which is required, gives the constant.

gvec is a vector of parameters for the asymmetric process - the order of gvec

should be one less than the order of avec. bvec is the vector of parame-

ters for the GARCH process. Note the stationarity conditions described under

GARCH.

6-422

TGARCH Process

See the “General Notes for GARCH” under GARCH, and the “General Notes

for Non-Linear Models” under NLS.

Example OLS y c x1 x2;

sigsq = serˆ2;

PARAM c0 c1 c2;

VALUE = coeff;

PARAM a0 a1 a2 b1 g1 g2;

VALUE = sigsq .1 .1 .1 .1 .1;

FRML cs1 a0 >= .000001;

FRML cs2 a1 >= 0;

FRML cs3 a2 >= 0;

FRML cs4 b1 >= 0;

FRML cs5 a1+a2+b1 <= .999999;

FRML eq1 resid = y - (c0 + c1*x1 + c2*x2);

FRML eq2 lf = tgarch(resid,a0|a1|a2,b1,g1|g2);

ML (p,d,i) eq1 eq2;

EQCON = cs1 cs2 cs3 cs4 cs5;

In this example, a linear TGARCH model is estimated using constrained max-

imum likelihood, with OLS starting values. The residuals are specified in eq1,

and the log likelihood is returned from eq2. Note the parameter restrictions

to ensure that the variance remains positive.

Source GARCHX.SRC

See Also GARCH, EQCON, FRML, ML, NLS

References Glosten, L.R., R. Jagannathan, and D.E. Runkle (1993). “On the Relation

between Expected Value and Volatility of the Nominal Excess Returns on

Stocks”, Journal of Finance, Vol 48, pp. 1779-1801.

6-423

TIMER

Purpose Creates a timer control for GAUSS.

Format TIMER (&f, param, intval, maxit);

Input &f pointer to a function.

param argument to function f.

intval scalar, interval in milliseconds.

maxit scalar, maximum number of iterations.

Remarks The TIMER control calls (polls) the function specified in f every intval millisec-

onds; thus it can be used in signal processing, or for simulating real time

processes. intval should be longer that the time necessary to execute f. An

optional initial parameter can be passed to f using param. The maximum

number of iterations is specified in maxit.

The timer can be stopped at any time by typing the ESC key.

TIMER is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx;

x = 2;

timer(&myfun,3,2000,5);

print x: x;

proc 0 = myfun(ix);

x = x+ix;

endp;

This example shows a simple cumulative addition. The timer calls myfun

every 2000 milliseconds for a total of 5 iterations. At each iteration, param,

which takes the value of 3, is added to the current value of �x. Thus, after 10

seconds, the program prints out the current value of x, which will be 17.

Source GXPROCS.SRC

6-424

TITLE

Purpose Creates a heading for a GAUSSX estimation procedure.

Format GAUSSX COMMAND vlist;

TITLE = title;

Input title string, optional, title.

Remarks The TITLE option prints the string title at the beginning of most GAUSSX pro-

cedures which produce output. The string should be surrounded by quotes.

The command only holds for the current command. title should not exceed

60 characters, otherwise some of the title will be truncated.

Example OLS y c x1 x2;

TITLE = First Regression -- x1 and x2;

The title “First Regression – x1 and x2” is printed at the beginning of the

regression.

See Also AR, ARCH, ARIMA, COVA, EXSMOOTH, FIML, GMM, GRAPH, KALMAN, NLS,

PLOT, NPR, PANEL, POISSON, QR, ROBUST, SURE, VAR, 2SLS, 3SLS

6-425

TOBIT Process

Purpose Creates a vector of log likelihoods for a Tobit model.

Format z = TOBIT (y, indx, sigma);

Input y literal, dependent variable.

x literal, index of independent variables.

sigma literal, residual variance.

Output z Vector of log likelihoods.

Remarks The Tobit coefficients are estimated using maximum likelihood; thus this can

be used for linear or non-linear models. Given the unobserved latent variable

y∗, and the observed variable y, then the Tobit model is given by:

y∗ = f (x, β) + ε

y = 0 if y∗ ≤ 0

y = y∗ if y∗ > 0

The dependent variable is treated as zero if y takes non positive values. Mod-

els with upper or lower truncation points at values different from zero can be

estimated by an appropriate transformation of the dependent variable, or by

customizing the likelihood function.

See the “General Notes for Non-Linear Models” under NLS, and the example

under ML. An example is given in test09.prg.

6-426

TOBIT Process

Example 1. OLS y c x1 x2;

PARAM a0 a1 a2;

VALUE = coeff;

PARAM sigma;

VALUE = ser;

FRML eq1 indx = a0 + a1*x1 + a2*x2;

FRML eq2 lf = TOBIT(y,indx,sigma);

ML (p,d,i) eq1 eq2;

GENR y = y - 5;

ML (p,d,i) eq1 eq2;

2. PARAM a b1 b2 sigma;

VALUE = 1 .5 .5 1;

FRML eq1 qhat = a*(Kˆb1).*(Lˆb2);

FRML eq2 lf = TOBIT(q,qhat,sigma);

ML (p,d,i) eq1 eq2;

In the first example, a standard linear Tobit model with truncation below zero

is estimated, using OLS starting values. The RHS index is stipulated in eq1,

and the log likelihood is returned from eq2. Then the Tobit model is re-

estimated, with truncation below 5. Note that the constant is now biased -

an unbiased constant would be 5 larger.

The second example shows how a non-linear Tobit estimation would be car-

ried out.

Source GXPROCS.SRC

See Also ML, NLS

References Tobin, J. (1958), “Estimation of Relationships for Limited Dependent Vari-

ables”, Econometrica, Vol. 26, pp. 24-36.

6-427

TRUST

Purpose Control over trust region processing.

Format GAUSSX COMMAND vlist;

STEP = TR ;

TRUST = controllist;

Input vlist literal, required, variable list.

controllist literal, optional, list of control options.

Remarks Trust region methods in optimization define a region around the current it-

erate, and then choose the step to be the approximate minimizer of the

quadratic model in this trust region. The trust region is ‖4b‖ ≤ δ, where

‖4b‖ is the norm of the change in the parameter estimate, and δ is a scalar

defining the size of the trust region. If the prediction given by the change

in the quadratic model is close to that of the actual function change, then

the trust region is increased, i.e. δ is increased. On the other hand, if the

quadratic approximation is poor, δ will be decreased.

The trust region methodology is implemented for unconstrained non-linear

optimization (NLS, FIML, GMM, ML) when the STEP type is set to TR.

Control over the trust region options is provided by the TRUST option; this

consists of a 4 element vector controllist; these elements are:

1. Initial size of region (s). δ is then calculated as
√

ks2, where k is the

number of parameters. Default = 0.1.

2. Maximum size of region (m). (s ≤ m). δ is then calculated as
√

km2.

Default = 1.

3. Tolerance for Newton estimate of Lagrange multiplier. Default = 0.001.

4. Maximum number of Newton iterations. Default = 3.

For a problem with a large number of parameters, creating the Hessian is

time consuming. For the trust region method, a quasi-Newton methodology

(eg. BFGS) can create an initial step direction and find the optimum position

in the trust region without having to do a Cholesky factorization - thus this can

be an efficient method for large problems.

6-428

TRUST

The trust region step methodology is especially useful for hard problems.

In econometrics, finding reasonable starting values for parameters is often

difficult, and poor starting values often result in a “Failure to Improve Objective

Function” error. Trust region step methodology can often provide a resolution

to this type of problem.

An example of trust region optimization is given in test28.prg - this example

uses a 20 parameter Rosenbrock function, with starting values at x(i) = 200,

a long way from the optimum x(i) = 200.

Example ML (p,i) eq1;

STEP = tr;

TRUST = .5 2 .001 5;

METHOD = nr nr nr;

This example would undertake maximum likelihood on eq1 using trust region

step method.

See Also FIML, GMM, ML, NLS

References Nocedal, J. and S Wright,(1999). Numerical Optimization Springer, New York.

6-429

VAR

Purpose Estimates the coefficients of vector autoregressive system of equations.

Format VAR (options) elist ;

ENDOG = endlist;

METHOD = methname;

ORDER = lags;

PDL = pdllist;

PERIODS = irfnum;

TITLE = title;

WEIGHT = wtname;

WINDOW = windowtype;

Input options optional, print options.

elist literal, required, variable list or equation name.

endlist literal, optional, endogenous variable list.

methname literal, optional, covariance method (NONE).

lags numeric, optional, number of lags used (1).

pdllist literal, optional, options for PDL.

irfnum numeric, optional, number of periods used by IRF (0).

title string, optional, title.

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

COVU Residual Covariance matrix.

Remarks The VAR command estimates a system of equations, in which the lagged

values of the endogenous variables occur on the RHS. Since lagged variables

are to be created from the endogenous variable names, the names should be

short (5 characters max.) to allow for the lagged component. GAUSSX uses

the current sample to estimate the VAR process, dropping the first lags cases

6-430

VAR

to allow for the lagged variables. Each equation has exactly the same terms

on the RHS (and can thus be efficiently estimated using OLS).

Optionally, the impulse response function (IRF) and the forecast error de-

composition (FED) are available. The user specifies the endogenous and

exogenous variables of the system in a FRML, as well as the maximum or-

der of the lags to be used for the endogenous variables. If the IRF is to be

produced, the user must also specify the number of periods to be used in

tracing the IRF. The IRF and FED will change depending on the ordering of

the endogenous variables, since residual covariance is assigned to the equa-

tion that comes first. Further information on the IRF and FED is given in the

on line help.

See the “General Notes for Linear Models” under OLS. An example is given

in test02.prg, and a Johansen test for cointegration in test19.prg.

Example 1. VAR (p) y c x1 x2 ;

2. FRML eq1 y m1 c x1 x2 x3;

VAR (p,d,s,v) eq1;

ENDOG = y m1;

ORDER = 2;

PERIODS = 6;

In the first example, a single equation VAR is estimated - since no subcom-

mands are used, the default is a single equation, with the first variable speci-

fied being the endogenous variable, and a lag structure of order one. Thus y

is regressed on c, x1, x2, and y(-1). The screen display pauses (p) after

each screen.

The second example shows how a two equation system is specified. The

FRML specifies the entire list of endogenous and exogenous variables of the

system. The list of endogenous variables is specified by the ENDOG option.

A lag structure of order 2 is used; thus the RHS variables for each equation

will consist of y(-1), y(-2,) m1(-1), m1(-2), c, x1, x2 and x3. The

PERIODS option will generate both the impulse response function and the

forecast error decomposition for 6 periods. The screen pauses (p) after each

6-431

VAR

display, and descriptive statistics (d) are printed. Both the variance covari-

ance matrix (v) and equation diagnostic statistics (s) are produced for each

equation.

See Also AR, FRML, OLS, PDL, VAR, WEIGHT, WINDOW

References Box, G., and G. Tiao (1981), “Modelling Multiple Times Series with Applica-

tions”, Journal of the American Statistical Association, Vol. 76, pp. 802-816.

6-432

VARMA Process

Purpose Creates a matrix of fitted values for a vector autoregressive moving average

process.

Format z = VARMA (y, phi, theta);

OPLIST = progopts ;

Input y literal, NxK matrix of time series.

phi literal, (P*K)xK AR coefficient matrix, or scalar zero.

theta literal, (Q*K)xK MA coefficient matrix, or scalar zero.

progopts literal, optional program options

Output z NxK matrix of fitted values.

Remarks The coefficients of the VARMA process are estimated using NLS. When there

is no MA component, this becomes the VAR model. When only a single time

series is specified, this becomes the ARMA model.

The program control options are specified in oplist. The options available are:

CONSTANT/[NOCONST] Specifies whether a constant is to be included. CON-

STANT should normally be specified for non-differenced

series with non-zero mean, unless the constant is ex-

plicitly specified as a parameter.

Both stationary and invertibility conditions need to be satisfied. GAUSSX pro-

vides a routine called mroot, which returns the value of the largest root, which

must have a modulus less than unity. Consequently, constrained NLS is usu-

ally required.

An example of VARMA is given in test39.prg.

See the “General Notes for Non-Linear Models” under NLS.

6-433

VARMA Process

Example FRML eqw w := varma(y1˜y2, p_mat, q_mat);

FRML eq21 y1 = c1 + submat(w,0,1);

FRML eq22 y2 = c2 + submat(w,0,2);

FRML ec1 mroot(p_mat) <= .9999;

FRML ec2 mroot(q_mat) <= .9999;

NLS (p,d,i) eq21 eq22;

EQSUB = eqw;

EQCON = ec1 ec2;

In this example, eqw returns the matrix of fitted values based on AR coefficient

matrix p_mat and MA coefficient matrix q_mat. These are estimated using

constrained NLS, where the constraints are specified in ec1 and ec2, and

where mroot is a GAUSSX routine for returning the value of the largest root in

the complex plane.

Source VARMAX.SRC

See Also ARIMA, ARMA, MROOT, NLS, VAR

References Hamilton, J.D. (1994), Time Series Analysis, Ch. 11.

6-434

WEIBULL Process

Purpose Creates a vector of log likelihoods for a Weibull process.

Format z = WEIBULL (y, indx, pvec);

Input y literal, dependent variable - duration.

indx literal, scale index

pvec literal, shape parameter

Output z Vector of log likelihoods.

Remarks The Weibull model can be used to estimate duration data. The expected

value of scalei is parameterized as:

E(scalei) = exp(indxi).

where the index is a function of explanatory variables, xi:

indxi = f (xi, β)

The coefficients, β and pvec are estimated using maximum likelihood; thus

this can be used for linear or non-linear models. In the Weibull distribution,

scale is the characteristic life. shape is the positive shape parameter.

In the default, there is no censoring. Censoring occurs if units are removed

prior to failure, or are still operating at the conclusion of the test (right cen-

sored). For the censored case, y is an Nx2 matrix, with the first column being

the duration value, and each element of the second column taking a value of

unity if the unit was censored, else zero.

See the “General Notes for Non-Linear Models” under NLS. An example is

given in test57.prg.

6-435

WEIBULL Process

Example PARAM b0 b1 b2 shape;

FRML eq0 scale = b0 +b1*arrtemp + b2*plant;

FRML ec1 shape >= 0;

1 FRML eq1 llfn = weibull(fail,scale,shape);

ML (p,i) eq0 eq1;

EQCON = ec1;

2 FRML eq2 llfn = weibull(fail˜censor,scale,shape);

ML (p,i) eq0 eq2;

EQCON = ec1;

In example 1, a Weibull model is estimated using constrained maximum like-

lihood, with the scale index defined in eq0, and the log likelihood in eq1.

Example 2 shows a similar estimation when some of the data is censored.

Source DURATION.SRC

See Also DURATION, ML, NLS

6-436

WEIGHT

Purpose To specify the weights for weighted analysis.

Format GAUSSX COMMAND vlist;

WEIGHT = wtname;

Input vlist literal, required, variable list.

wtname literal, required, weighting variable.

Remarks Weighted regressions are available using the WEIGHT option. This option is

available for all parametric estimation models Negative weights are given zero

value, and weights are normalized such that the sum of the weights equals

the number of observations.

For the descriptive statistics (COVA) and the linear regression models, each

observation is multiplied by square root of the normalized weight, and the

statistics and diagnostics generated are for the weighted data. For GMM, NLS

and FIML, the residuals are multiplied by the square-root of the normalized

weights in a manner similar to OLS. For the probability models (ML, QR, and

POISSON models), the log of the likelihood for each observation is weighted

by the normalized weight.

Weighted least squares is used when the variance of the disturbances in

a regression are known to differ across observations; in this context, it is

equivalent to generalized least squares. The series wtname should be pro-

portional to the inverse of the variances of the disturbances in the regression.

For cross-section data, the weight should equal population if the dependent

variable is per-capita, and should equal the reciprocal of population if the

dependent variable is an aggregate.

Example OLS y c x1 x2 ;

WEIGHT = wtvar;

In this example, a weighted regression is estimated using the vector wtvar

as the weight. This is equivalent to doing GLS on a heteroscedastic model.

See Also AR, ARCH, COVA, FIML, GMM, NLS, POISSON, QR, SURE, VAR, 2SLS, 3SLS

6-437

WELFARE

Purpose Evaluates consumer surplus associated with a given change in prices.

Format { cs, se, dwl } = WELFARE (mth, &fct, pmat, y, b, bcov);

Input mth string, consumer surplus method.

&fct literal, required, demand function procedure.

pmat Kx2 matrix, required, initial and final prices.

y scalar, required, income.

b Rx1 vector, optional, parameters of the demand function.

bcov RxR matrix, optional, covariance matrix of b, or scalar zero

wStep global scalar, number of steps (default 20).

wPrint global scalar, output flag: 0 - off, 1 - on. (default=1)

Output cs consumer surplus.

se standard error of cs.

dwl deadweight loss

Remarks The WELFARE command evaluates consumer surplus and deadweight loss

for a given set of price changes for a demand system. Three methods are

available, and are specified in mth:

CV Compensating Variation.

EV Equivalent Variation.

MS Marshallian Surplus.

The standard error of the computed consumer surplus and deadweight loss

is evaluated if the estimated parameter covariance matrix bcov is specified.

The K equation demand system is specified in &fct. This is a pointer to a

procedure that takes three input arguments:

1 Kx2 matrix of initial and final prices.

2 Income.

3 Rx1 vector of parameters.

6-438

WELFARE

An example of WELFARE is given in test46.prg.

WELFARE is pure GAUSS code, and can be used independently of GAUSSX.

Example library gaussx;

let p0 = 1.0 2.0; @ initial price vector @

let p1 = 1.5 2.5; @ final price vector @

y = 220; @ income @

let b = 1 1; @ demand function params @

let omega[2,2] = .10 -.05 @ var-covariance matrix @

-.05 .05; @ of estimated coeffs @

{cv, secv, dwl} = welfare(cv,&qfn, p0˜p1, y, b, omega);

proc qfn(p,y,b); @ demand function @

local pa, pb, za, zb;

pa = p[1]; pb = p[2];

za = b[1]*pb*y/(pa*(b[2]*pa+b[1]*pb));

zb = b[2]*pa*y/(pb*(b[2]*pa+b[1]*pb));

retp(za|zb);

endp;

This example evaluates the compensating variation and deadweight loss for

a two good system with an initial price p0 and a final price p1. Typically, the

parameter vector b and its association covariance matrix would be derived

from a previous estimation.

Source WELFAREX.SRC

References Breslaw, J.A. and J.B. Smith (1995), “A simple and efficient method for esti-

mating the magnitude and precision of welfare changes”, Journal of Applied

Econometrics, Vol 10, pp. 313-327.

6-439

WHITTLE Process

Purpose Creates a vector of log likelihoods for a local Whittle process.

Format z = WHITTLE (y, d));

OPLIST = oplist;

PERIODS = periods;

Input y literal, Nx1 vector of time series.

d scalar, degree of differencing.

oplist literal, optional, program options.

periods literal, optional, truncation value.

Output z Vector of log likelihoods.

Remarks The local Whittle estimator is a semi-parametric estimator of the degree of

differencing in a fractionally integrated process, based on the periodogram.

The fractionally integrated process is given by:

(1 − L)dyt = εt1{t ≥ 1}, t = 0,±1, . . .

where L is the backward shift operator, 1{.} is the indicator function and d
is the fractional degree of differencing. d is estimated using maximum likeli-

hood.

The local Whittle estimator involves the summation of the frequencies up to

2πm/n where m is the truncation value, and is specified using the PERIODS

option. The default value is n0.6

The program control options are specified in oplist. The options available are:

[LW]/ELW/FELW Specifies the estimation method:
LW Local Whittle

ELW Exact Local Whittle

FELW Feasible Exact Local Whittle

[PAD]/NOPAD Specifies whether padding will occur for the Fourier trans-

form. Given the sample size, the fast Fourier transform will always

be used if padding is not required. Otherwise, if NOPAD is specified,

the slower discrete Fourier transform will be used.

6-440

WHITTLE Process

An example is given in test55.prg.

Example FRML eq1 llf = WHITTLE(y, d);

ML (p,i) eq1 ;

PERIODS = 80;

OPLIST = elw;

In this example, the memory parameter d for the time series y is estimated

using an exact local Whittle estimator based on a truncation value of 80.

Source WHITTLEX.SRC

References Robinson, P.M. (1995), “Gaussian semiparametric estimation of long range

dependences”, Annals of Statistics, Vol. 23, pp. 1630-1661.

Shimotsu, K and P.C.B Phillips (2005), “Exact Local Whittle Estimation of

Fractional Integration”, Annals of Statistics, Vol. 33, pp. 1890-1933.

6-441

WINDOW

Purpose To specify a spectral window.

Format GAUSSX COMMAND vlist;

WINDOW = wintype winsize;

Input vlist literal, required, variable list.

wintype literal, optional, spectral window.

winsize numeric, optional, window width.

Remarks Spectral windows are used in GAUSSX both in NPR, and in evaluating pa-

rameter covariance matrices which are consistent to residual autocorrelation

(Newey-West).

For NPR, only the winsize parameter is used, as a measure of the window

width.

For Newey-West, winsize gives the maximum lag length, ie. the number of

autocorrelation terms, while wintype gives the spectral kernel. The available

kernels are [BARTLETT], HANNING, PARZEN, UNIFORM, and WELCH. These

are defined in Press et al, 1986.

Example 1. OLS y c x1 x2 ;

METHOD = robust;

WINDOW = parzen 2;

2. NLS eqn1 eqn2;

INST = c x1 x2 x3;

METHOD = nr nr robust;

WINDOW = 1;

In the first example, an OLS regression is estimated with a parameter Newey-

West covariance matrix based on a lag length of 2, and a Parzen window.

The second example shows a non-linear 3SLS with a Newey-West covariance

matrix based on a lag length of 1, and a BARTLETT (default) window.

6-442

WINDOW

See Also GMM, NLS, NPR, OLS, SURE, VAR, 2SLS, 3SLS

References Press W.H.,et al (1986), “Numerical Recipes”, Cambridge University Press,

Cambridge.

Newey, W.K., and K.D. West (1987), “A Simple Positive Semi-Definite Het-

eroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econo-

metrica, Vol. 55, pp. 703-708.

6-443

2SLS

Purpose Estimates the coefficients in an equation using two stage least squares.

Format 2SLS (options) vlist ;

INST = instlist;

METHOD = methname;

PDL = pdllist;

TITLE = title;

WEIGHT = wtname;

WINDOW = windowtype;

Input options optional, print options.

vlist literal, required, variable list or equation name.

instlist literal, required, list of instruments.

methname literal, optional, covariance method (NONE).

pdllist literal, optional, options for PDL.

title string, optional, title.

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

RSS Residual sum of squares.

SER Standard error of the regression.

FSTAT F–statistic.

QF Quadratic form

RSQ R-squared.

RBARSQ RBAR-squared.

VCOV Parameter covariance matrix.

Remarks The 2SLS command carries out two stage least squares. In such a regres-

sion, the user must specify a list of instrumental variablesinstrumental vari-
ables – there must be at least as many instruments as there are independent

variables. Usually a constant (c) is needed in the list of instruments.

6-444

2SLS

See the “General Notes for Linear Model” under OLS. Non-linear 2SLS is de-

scribed under NLS. An example of 2SLS is given in test02.prg.

Example 1. 2SLS y c x1 x2 ;

INST = c x1 x3 x4;

2. 2SLS (d,p,s) eq1;

INST = c x1 x2(-1) x4;

WEIGHT = wtvar;

In the first example, 2SLS is performed with y as the dependent variable, and

c, x1 and x2 as the independent variables; the instruments are specified in

the INST list.

In example 2, a weighted 2SLS analysis is performed on the structural equa-

tion specified in eq1, with the instruments specified in instlist; execution

pauses (p) after each screen display, and descriptive (d) and diagnostic (s)

statistics are produced.

See Also FRML, NLS, OLS, PDL, TITLE, WEIGHT, WINDOW, 3SLS

References Greene, W.H. (1993), Econometric Analysis, 2nd ed. Macmillan, New York.

6-445

3SLS

Purpose Estimates the coefficients in a system of equations using three stage least

squares.

Format 3SLS (options) elist ;

INST = instlist;

METHOD = methname;

PDL = pdllist;

TITLE = title;

WEIGHT = wtname;

WINDOW = windowtype;

Input options optional, print options.

elist literal, required, equation list.

instlist literal, required, list of instruments.

methname literal, optional, covariance method (NONE).

pdllist literal, optional, options for PDL.

title string, optional, title.

wtname literal, optional, weighting variable.

windowtype literal/numeric, optional, spectral window.

Output COEFF Vector of coefficients.

STDERR Vector of standard errors.

TSTAT Vector of t-statistics.

ETA B Vector of elasticities.

ETA SE Vector of std. error of elasticities.

ETA T Vector of t-stat. of elasticities.

QF Quadratic form

VCOV Parameter Covariance matrix.

COVU Residual Covariance matrix.

Remarks The 3SLS command estimates a system of linear equations (a stacked equa-

tion system) in two stages. In the first stage each equation is estimated using

2SLS; then using the estimated variance covariance matrix of residuals, the

system is estimated using generalized least squares. As in 2SLS, the user

must specify a list of instrumental variablesinstrumental variables—these are

usually (though not always) the exogenous variables of the system. It is up

to the user to make sure that each equation is identified.

6-446

3SLS

See the “General Notes for Linear Model” under OLS. Non-linear 3SLS is de-

scribed under NLS. An example of 3SLS is given in test02.prg.

Example FRML eq1 y1 c x1 x2 y2;

FRML eq2 y2 c x1 x3 x4 y1;

FRML eq3 y2 c x1 x3 y1;

1. 3SLS (p) eq1 eq2;

INST = c x1 x2 x3 x4;

2. 3SLS eq1 eq3;

INST = c x1 x2 x3 ;

Example 1 estimates the system of linear equations specified in eq1 and eq2

using 3SLS; execution pauses (p) after each screen display.

Example 2 shows an exactly identified system; thus the coefficient estimates

from 2SLS and 3SLS are identical.

See Also FRML, NLS, OLS, PDL, TITLE, WEIGHT, WINDOW, 2SLS

References Greene, W.H. (1993), Econometric Analysis, 2nd ed. Macmillan, New York.

6-447

Appendices A
A.1 Error Processing.

A.2 Installing New Procedures.

A.3 Mixing GAUSS and GAUSSX.

A.4 Running GAUSS Application Modules.

A.5 Automatic Differentiation.

A.6 Support Functions.

A.7 Trouble Shooting.

A.8 Statlib Distributions]

A-1

A.1 Error Processing

Error processing occurs jointly by GAUSS and GAUSSX. If an error is encountered, the usual

response is that the program will be terminated with an error message. If GAUSSX processed

the error, the nature of the error will be described, and the user is returned to the GAUSS

prompt in Windows, and to the GAUSSX menu in UNIX. If GAUSS processes the error, the line

number (in parenthesis) where the error occurred is reported, and the user will be returned

to the GAUSS prompt. The user should either select the Gaussx / Display Error File menu

item, or type ”Ctrl-F3”, or enter the command:

gaussx �

GAUSSX will display the parsed file (gxfile.prg), with the error highlighted, so that the user can

see exactly where the error occurred.

In some situations, it may be necessary to clear memory before restarting GAUSS; this can be

achieved by typing at the GAUSS prompt:

new �

Once the command file has been parsed, GAUSSX transfers control to GAUSS, which scans the

program code and compiles it into a form that it can then execute. At this stage, all error pro-

cessing will be done by GAUSS. Typical errors include incorrect syntax, and specifying variables

in equations before they have been defined. For example, specifying an estimation process (eg.

2SLS) before the appropriate equations (FRML) have been specified will cause GAUSS to abort

the compilation. Note that the line number reported by GAUSS in these circumstances refer to

the gxfile.prg file.

Once execution commences, errors can be trapped by either GAUSS or GAUSSX. The GAUSSX

error processor will identify the current command, the current subroutine, and the nature of the

problem. The narrative in these cases will indicate what corrections are necessary. In some

cases a warning will be given; again, the nature of the problem will be clear.

Errors not trapped by GAUSSX will be trapped by GAUSS. In these cases, a message will be

printed, and a line number of the procedure in which the error occurred will also be printed

if the LINES ON option is specified. These types of errors will usually occur because of an

incorrect GAUSS operation by the user. For example, if, in an equation, the user specified a

A-2

Appendices

matrix operation between non-conformable matrices, than this would result in a the error being

trapped by GAUSS. GAUSSX errors would also be trapped in this way. Some indication of the

nature of the problem can usually be ascertained by asking why this particular command failed,

while similar commands were successfully executed. For example, a 2SLS might work just fine,

yet a subsequent 2SLS might fail because the user specified the dependent variable amongst

the list of instruments. If all else fails, look at the source coding for the procedure mentioned on

gsx\gaussx, and read the chapter on “Error Handling” in the GAUSS manual for more details.

A-3

A.2 Installing New Procedures

The files in the folder \gauss\gsx\gaussx contains the The entire source code for the compiled

GAUSSX routines. This means that it is relatively simple for the user to make changes to the way

a particular procedure runs, or to write new procedures. The location of non-compiled GAUSS

code is specified under the appropriate command, and will be on the \gauss\src directory.

To make a change to an existing procedure, you need to first find the appropriate files. Look

first at the file init.src. You will see a variable called ” table”, whose first column contains all

the GAUSSX commands. The corresponding element of the second column is the GAUSSX call

for that command. For example, the second column for the command OLS is SYSX. SYSX will

typically be found in the file with the same name – sysx.src. Now, edit this file from GAUSS:

edit \gauss\gsx\gaussx\sysx.src

make your change to this file (make sure you have a backup), and then execute it (Ctrl-F2).

Next time GAUSSX runs, it will load the new version of this compiled file.

Experienced GAUSS users who find that they prefer to run GAUSS under the GAUSSX environ-

ment may wish to install statistical procedures of their own. This appendix describes the steps

necessary to undertake this process, and in so doing describes the operation of GAUSSX is

some detail. This is somewhat technical, so don’t try unless you are familiar with both GAUSS

and GAUSSX.

Start off with a file which is not dissimilar to the type of process that you wish to program. For

example, a simple estimation might use the arx.src file as the template; a descriptive procedure

might use covax.src as its template. Follow the basic style - the way data is read in is fairly

standard. The arguments of each GAUSSX command are stored in a vector called ” data”.

Other options (MAXIT, etc.) can be used as is. You may need a couple of procedures to do

the full job. Compile these procedures, and save them to the \CP subdirectory. Now, having

done the programming, you need to incorporate the new procedures into GAUSSX . First, add

these procedures as dummy procedures within the file src\gaussx.prc, and augment ” arglst”

in the same file. Next, add the command to the matrix ” table” in init.src, and recompile that

file; don’t forget to augment the size of ” table”. Now, go to the file src\gaussx2.src, and add

the necessary coding to the proc. EXEGX. To run this new version, you need to create a new

gaussxcp.gcg file; run the file \gauss\gsx\compile.prg from GAUSS. Finally, you must test your

new command, to make sure it operates correctly.

A-4

Appendices

A.3 Mixing GAUSS and GAUSSX

This appendix describes howGAUSSX can be used with GAUSS to carry out tasks that are not

possible with just GAUSSX.

GAUSSX variables – those that are available from opening a data set, or created with a GENR,

LOAD, STORE, FORCST or SOLVE command, – are stored in the GAUSSX workspace. After

each command has been executed, each of these variables is set to scalar zero. This clears

out the GAUSS workspace, which otherwise would get filled up very quickly. Thus, in general, a

GAUSS statement on a GAUSSX variable will fail unless that variable has been copied into the

GAUSS workspace using the FETCH command. Note that when a GAUSS variable is copied to

the GAUSSX workspace using the STORE command, it becomes a GAUSSX variable, and will be

set to scalar zero. Note also that the default for GAUSSX is OPTION = SPACE. Setting OPTION =

TIME does not clear out data and procedures; as such, it is especially useful in a DO loop.

Program control is best handled using GAUSS commands. DO..ENDO work exactly as described

in the GAUSS manual, and can include a block of GAUSSX commands. IF..ELSE..ENDIF works

similarly. GOTO requires that the label is a separate command:

GOTO FINISH;

.

.

FINISH:;

One of the most powerful tools in GAUSSX is the ML command. However, it is often the case

that the likelihood cannot be built up using a series of FRMLs. The solution is to specify a PROC

within a FRML:

PARAM a1 a2 a3;

FRML eq1 llfn = userprc(x1˜x2˜x3,a1˜a2˜a3);

ML eq1;

PROC userprc(x,a);

.

.

retp(llf);

endp;

A-5

Note that the variables and parameters must be specified, either in the likelihood FRML, or in a

dummy FRML. Userprc must return a vector of log likelihoods. See the coding on src\gxprocs.src

for examples. Frequently used procedures can be added to gxprocs.src; the item must be

added to the GAUSSX library \gauss\lib\gaussx.lcg.

A-6

Appendices

A.4 Running GAUSS Application Modules

Many of the GAUSS Application Modules can be run from GAUSSX. Since the format of the Ap-

plication Modules is quite standardized, it makes sense to use these modules as an extension

of the GAUSSX language. As an example, suppose that one wanted to list the variables in a

GAUSSX dataset. This can be done very simply using the Data Utilities Module:

create 1 1000;

library dutil;

open; fname = myset;

@@ call ddesc(dataset);

end;

Note in this example that the variable dataset has already been initialized by GAUSSX .

As another example, consider using the TTEST command in the Basic Statistic Module for

testing the differences of means between two groups:

create 1 100;

library bstat;

open; fname = myset;

bstatset;

let vlist = x1 x2;

let grpvar = size;

_ttcut = 2 ;

@@ call ttest(dataset,grpvar,vars);

end;

This is a standard GAUSSX command file, interspersed with GAUSS statements. The library

command is necessary to inform GAUSS where to find the subsequent files. The error UNDEFINED

SYMBOL: TTEST results if this command is not included. All the variables, such as vlist, as

well as any globals, such as _ttcut, must be defined prior to the procedure call. The @@ sym-

bol forces output ON so that the resulting output is written to the file specified on the GAUSSX

menu. dataset is a GAUSSX reserved word that contains the name of the current GAUSSX

workspace - usually TEMP1 or TEMP2. The default selection is:

A-7

_dtsel = {_sample eq 1};

This ensures that the current SMPL is respected.

There is a significant difference between a GAUSSX command and an Application Module. The

former is loaded in the compiled form, executed, and then cleared from memory. The latter is

first compiled from source coding, which results in a significant delay prior to execution. After

execution, the modules remain resident. Thus it is easy to get workspace problems. If a module

cannot load because of insufficient memory change the value of ” rowfac”; GAUSSX uses an

initial value of 0.5. To clear out memory after using an application module, use:

new; �

A-8

Appendices

A.5 Automatic Differentiation

The GAUSSX default mode of estimating gradients and Hessians for non-linear optimization is

to use finite differencing - for example:

dsin/dx = (sin(x + h) − sin(x))/h

This is a numerical solution, and while it is easy to implement, it is slow. especially when

estimating the Hessian with a large number of parameters. It can also be inaccurate. An

analytic solution:

dsin/dx = cos(x)

is much faster and more accurate. If Maple 9 or 9.5 is installed, GAUSSX can use the Maple ker-

nel to generate automatic differentiation (AD) code as GAUSS procedures. Maple is distributed

by Waterloo Maple, Inc, Canada.

AD under Gaussx requires minimal work by the user. The command

OPTION ad;

will result in all subsequent gradients and Hessians to be evaluated analytically. Alternatively,

individual analytic gradients and/or Hessians can be invoked using the existing syntax:

gradient = &symgrad;

hessian = &symhess;

When GAUSSX encounters the keywords &symgrad or &symhess, it loads the Maple kernel,

processes the FRML that are used in the current estimation, and creates GAUSS procedures

symgrad and/or symhess which return the respective gradients and/or Hessian, using the sym-

bolic processing capability of Maple. These procedures can be saved using the SAVEPROC

command, and loaded using the LOADPROC command.

AD works with ML, NLS and FIML. Depending of the size and type of problem analytic gradients

and Hessians can result in speed increases for optimization problems of between 3 and 10

fold. Note that the Hessian is only used if the NR algorithm is specified.

AD can be used for most of the estimation processes specified in GAUSSX. For many pro-

cesses, such as MNL, TOBIT and GARCH, the gradients are evaluated based on AD applied to

A-9

the entire code. For other processes - such as MNP and SV - the gradients are evaluated using

a mixture of analytic and numeric techniques.

Unless an error occurs, the process is completely transparent to the user. A full diagnostic

evaluation of the process is available by specifying ”s” as part of the print option.

Example

ML (p,i,s) eq1 eq2;

METHOD = nr bhhh nr;

GRADIENT = &symgrad;

In this example, gradients are evaluated using automatic differentiation. The print option ”s”

generates a complete diagnostic.

An example is shown in test42.prg. The timings shown exclude the overhead of creating the AD

procedures in Maple. Use of the SAVEPROC and LOADPROC commands eliminates this overhead.

A-10

Appendices

A.6 Support Functions

While the reference section provides details of GAUSSX commands, there are a number of other

support commands that provide the required functionality. For example, the ability to forecast

an ARFIMA process requires the autocovariance function for this process, and this proc (acv)

is available. This appendix lists with a brief description these support functions.

ACF r = ACF (d, phi, theta, n);

Computes autocorrelation function of an ARMA (d = 0) or ARFIMA (d < .5) given

difference parameter, d, AR coefficients phi, and MA coefficients theta. r is the

nx1 vector of autocorrelation coefficients.

ACV v = ACV (d, phi, theta, n);

Computes autocovariance function of an ARMA (d = 0) or ARFIMA (d < .5)

given difference parameter, d, AR coefficients phi, and MA coefficients theta. v

is the nx1 vector of autocovariance coefficients.

ARCCOSH py = ARCCOSH (x);

The function arccosh(x) is the inverse function of the function cosh(x).

y = argcosh(x);

ARCSINH py = ARCSINH (x);

The function arcsinh(x) is the inverse function of the function sinh(x).

y = argsinh(x);

ARCTANH py = ARCTANH (x);

The function arctanh(x) is the inverse function of the function tanh(x).

y = argtanh(x);

A-11

CENMEANC mu = CENMEANC (x, cen, ctype);

The function returns the mean for a type 1 censored sample from a normal

population, where x is the sample vector, cen is the censor vector with elements

of unity for censored observations, and ctype is set to zero for left censored, and

unity for right censored.

y = cenmeanc(x,cen,1);

CENSTDC mu = CENSTDC (x, cen, ctype);

The function returns the standard deviation for a type 1 censored sample from

a normal population, where x is the sample vector, cen is the censor vector with

elements of unity for censored observations, and ctype is set to zero for left

censored, and unity for right censored.

y = censtdc(x,cen,1);

COMBS p = COMBS (v, k);

Given an input of a scalar n or a vector v of length n, computes the matrix p

with nCk rows and k columns containing all possible nCk combinations of the k

elements.

p1 = COMBS(5,2);

let v = 1 4 5 7 9;

p2 = COMBS(v,2);

DECONV x1 = DECONV (z, x2);

Computes the deconvolution of a vector.

z = CONV(x1,x2);

x2 = DECONV(z,x1);

x1 = DECONV(z,x2);

A-12

Appendices

INTERP yint = INTERP (y, x, xtarg);

Computes the univariate interpolation yint for the target points xtarg, given a

grid x with associated function values y.

let xint = .3 .4 .5;

yint = INTERP(y, x, xint);

INTERP2 val = INTERP2 (y, x, A, ytarg, xtarg);

Computes the two dimensional interpolation on the mxn table A, tabulated at the

grid points defined by the mx1 vectory and the nx1 vectorx at the target points

ytarg and xtarg. This is a table lookup function.

let x = .3 .4 .5;

y = seqa(.1,.1,10);

let A[10,3] =

val = INTERP2(y, x, A, .75, .35);

Returns the scalar interpolated value of A evaluated at {.75, .35}.

ISCHAR y = ISCHAR (x);

Returns y = 1 if the matrix x contains a character, else returns y = 0.

ISEMPTY y = ISEMPTY (x);

Returns y = 1 if x is an empty string or matrix, else returns y = 0.

MPRINT MPRINT (x, rowname, colname, title, pause);

Prints out a formatted matrix x, with row and column names. Output waits for a

key input if pause is true. This is a GAUSSX command.

PERMS p = PERMS (v);

Given an input of a scalar n or a vector of length n, computes the matrix p with

n! rows and n columns containing all possible permutations of the n elements.

A-13

p1 = PERMS(3);

let v = 1 4 5;

p2 = PERMS(v);

POLYDIV psi = POLYDIV (theta, phi, n);

Computes the polynomial division psi(B) = theta(B)/phi(B) where theta

and phi are input polynomial coefficient vectors and psi is an (n+1 x 1) polyno-

mial coefficient vector.

POLYINV psi = POLYINV (phi, n);

Computes the polynomial inversion psi(B) = 1/phi(B), where psi is an (n+1

x 1) polynomial coefficient vector.

SCALZERO y = SCALZERO (x);

Returns y = 1 if x is a scalar equal to zero, else returns y = 0.

WAITKEY WAITKEY (pause);

Prompts for a key input if pause is true. This is a GAUSSX command.

XGAMMA y = XGAMMA (x);

Computes gamma(x), where x takes all real values −∞ < x < ∞ .

XPAND xmat = XPAND (x, p);

xmat consists of all own product and cross product terms of x, for all powers

from zero (a constant) up to and including p, without repetitions. Thus if x in an

nxk matrix, and p = 2, then xmat will consist of a matrix with m = 1 + k + .5 ∗ k ∗
(k + 1) columns.

Example

library gaussx;

let phi = .7 .2;

r = acf(0,phi,0,10);

This example shows how the autocorrelation function can be derived for a second order AR

process;

A-14

Appendices

A.7 Trouble Shooting

A.7.1 Windows

1. GAUSS failed to compile all the GAUSSX procedures. This can be done manually. Enter

GAUSS, and at the GAUSS prompt, type:

run c:\gauss\gsx\gaussx.cpl; �

2. Some of the GAUSSX statements described in the GAUSSX help file do not seem to work.

The help file has been written to include all versions of GAUSSX, up to 8.1.1. The actual

set of commands that can be used depend on the version of GAUSSX that you actually

have installed.

3. On running a GAUSSX command file, a whole lot of errors, followed by a number of

undefined symbols.

Ensure that the Option\Parse is checked; the File Type on the top RHS of the GAUSSX

Project Options window should display “Gaussx”.

4. On running a GAUSS command file, a whole lot of errors, followed by a number of unde-

fined symbols, or errors called by PARSE.

Ensure that the Option\Parse is unchecked; the File Type on the top RHS of the GAUSSX

Project Options window should display “Gauss”.

A.7.2 UNIX

1. GAUSSX cannot be found with the command: run gaussx.

Make sure that GAUSS is launched from its own directory, or use the full path name.

2. GAUSSX loads, but dies at the menu. All the paths on the file /gauss/gsx/gaussx.cfg

must be complete and valid, and you must have write permission for the output file, and

the work and scratch paths. For network situations, see Chapter 2.

A-15

A-16

Appendices

A.8 Statlib Reference

Continuous Distributions

For x to be distributed by a continuous distribution, x must be continuous and smooth over the

specified range.

Beta Distribution

PDF

1
B(α, β)

xα−1(1 − x)β−1

CDF ∫ x

−∞

1
B(α, β)

tα−1(1 − t)β−1dt

where B is the Beta function.

Range 0 ≤ x ≤ 1.

Shape1 parameter α > 0.

Shape2 parameter β > 0.

Beta Distribution with lower and upper threshold

PDF

1
B(α, β)

(
x − θ1
θ2 − θ1

)α−1 (
θ2 − x
θ2 − θ1

)β−1

CDF

∫ x−θ1
θ2−θ1

−∞

1
B(α, β)

tα−1(1 − t)β−1dt

A-17

where B is the Beta function.

Range θ1 ≤ x < θ2.

Shape1 parameter α > 0.

Shape2 parameter β > 0.

Lower threshold θ1
Upper threshold θ2

Notes: Estimation of the 4 parameter Beta distribution is undertaken in two

parts. In the first part, initial parameter estimates are derived using the method

of moments. The threshold parameters are then held using these values, and

the shape parameters are then estimated using maximum likelihood.

BoxCox Distribution

PDF

xλ−1

σ
√

2π
e−((xλ−1)/λ−µ)2/2σ2

CDF ∫ (xλ−1)/λ

−∞

1

σ
√

2π
e−(t−µ)2/2σ2

dt

Range 0 < x < ∞.

Location parameter, µ, the mean.

Scale parameter, σ > 0, the standard deviation.

Shape parameter λ.

Notes: The concentrated likelihood is used in the ML estimation. This im-

plies that the location and scale parameters are not estimated freely, but are

derived as the mean and standard deviation of the BoxCox transformed vari-

ate.

BoxCox Distribution with threshold

PDF

(x − θ)λ−1

σ
√

2π
e−(((x−θ)λ−1)/λ−µ)2/2σ2

A-18

Appendices

CDF ∫ [(x−θ)λ−1]/λ

−∞

1

σ
√

2π
e−(t−µ)2/2σ2

dt

Range 0 < x − θ < ∞.

Location parameter, µ, the mean.

Scale parameter, σ > 0, the standard deviation.

Shape parameter λ.

Threshold parameter θ < min(x).

Notes: The concentrated likelihood is used in the ML estimation. This im-

plies that the location and scale parameters are not estimated freely, but are

derived as the mean and standard deviation of the BoxCox transformed vari-

ate.

Burr Distribution

PDF

ck(x/β)c−1

β(1 + (x/β)c)k+1

CDF

1 − (1 + (x/β)c)−k

Range 0 ≤ x < ∞.

Scale parameter β > 0.

Shape parameter, c > 0.

Shape parameter, k > 0.

Burr Distribution with threshold

PDF

ck((x − θ)/β)c−1

β(1 + ((x − θ)/β)c)k+1

CDF

1 − (1 + ((x − θ)/β)c)−k

A-19

Range 0 ≤ x − θ < ∞.

Scale parameter β > 0.

Shape parameter, c > 0.

Shape parameter, k > 0.

Threshold parameter θ < min(x).

Cauchy Distribution

PDF πβ 1 + (
x − α
β

)2−1

CDF

0.5 +
1
π

tan−1
(

x − α
β

)
Range −∞ < x < ∞.

Location parameter α, the median.

Scale parameter β > 0.

Chi-Squared Distribution

PDF

xv/2 exp(−x/2)
2v/2Γ(v/2)

CDF

γ(v/2, x/2)
Γ(v/2)

where Γ(k) is the Gamma function, and γ(k, z) is the lower incomplete Gamma

function.

Range 0 ≤ x ≤ ∞.

Shape parameter v > 0, the degrees of freedom.

A-20

Appendices

Chi-Squared Distribution with threshold

PDF

(x − θ)v/2 exp(−(x − θ)/2)
2v/2Γ(v/2)

CDF

γ(v/2, (x − θ)/2)
Γ(v/2)

where Γ(k) is the Gamma function, and γ(k, z) is the lower incomplete Gamma

function.

Range 0 ≤ x − θ ≤ ∞.

Shape parameter v > 0, the degrees of freedom.

Threshold parameter θ < min(x).

Chisq Distribution with scale

PDF

(x/β).5ν−1e−0.5x/β

β 2.5νΓ(.5ν)

CDF ∫ .5x/β

0

e−tt.5ν−1

Γ(.5ν)
dt

where Γ is the gamma function.

Range 0 ≤ x < ∞.

Shape parameter ν > 0.

Scale parameter β > 0.

A-21

Chisq Distribution with scale and threshold

PDF

((x − θ)/β).5ν−1e−0.5(x−θ)/β

β 2.5νΓ(.5ν)

CDF ∫ .5(x−θ)/β

0

e−tt.5ν−1

Γ(.5ν)
dt

where Γ is the gamma function.

Range 0 ≤ x − θ < ∞.

Shape parameter ν > 0.

Scale parameter β > 0.

Threshold parameter θ < min(x).

Erf Distribution

PDF

βe−(βx)2

√
π

CDF ∫ x

−∞

e−(βt)2

√
π

dt

Range −∞ < x < ∞.

Scale parameter β > 0.

Exponential Distribution

PDF

e−x/α

α

A-22

Appendices

CDF

1 − e−x/α

Range 0 ≤ x < ∞.

Scale parameter, α > 0, the mean.

Exponential Distribution with threshold

PDF

e−(x−θ)/α

α

CDF

1 − e−(x−θ)/α

Range 0 ≤ x − θ < ∞.

Scale parameter, α > 0, the mean.

Threshold parameter θ < min(x).

F Distribution

PDF

(v/w)v/2x(v/2−1)

B(v/2,w/2)[1 + (v/w)x](v+w)/2)

CDF

I vx
vx+w

(v/2,w/2)

where B(a, b) is the Beta function, and where Ix(a, b) is the regularized incom-

plete Beta function.

Range 0 ≤ x ≤ ∞.

Shape1 parameter v > 0, integer, first degrees of freedom.

Shape2 parameter w > 0, integer, second degrees of freedom.

A-23

F Distribution with threshold

PDF

(v/w)v/2(x − θ)(v/2−1)

B(v/2,w/2)[1 + (v/w)(x − θ)](v+w)/2)

CDF

I vx
v(x−θ)+w

(v/2,w/2)

where B is the Beta function, and where Ix(a, b) is the regularized incomplete

Beta function.

Range 0 ≤ x − θ < ∞.

Shape1 parameter v > 0, integer, first degrees of freedom.

Shape2 parameter w > 0, integer, second degrees of freedom.

Threshold parameter θ < min(x).

F Distribution with scale

PDF

1
x B(.5ν, .5ω)

√
(ν x/α)ν ωω

(ν x/α + ω)ν+ω

CDF ∫ z

−∞

1
B(.5 ν, .5ω)

t.5ν−1(1 − t).5ω−1dt

where

z =
(ν x)

(ν x + αω)

and where B is the Beta function.

Range 0 ≤ x < ∞.

Scale parameter α > 0.

Shape parameter ν > 0.

Shape parameter ω > 0.

A-24

Appendices

F Distribution with scale and threshold

PDF

1
(x − θ) B(.5ν, .5ω)

√
(ν (x − θ)/α)ν ωω

(ν (x − θ)/α + ω)ν+ω

CDF ∫ z

−∞

1
B(.5 ν, .5ω)

t.5ν−1(1 − t).5ω−1dt

where

z =
(ν (x − θ))
(ν x + αω)

and where B is the Beta function.

Range 0 ≤ x − θ < ∞.

Scale parameter α > 0.

Shape parameter ν > 0.

Shape parameter ω > 0. Threshold parameter θ < min(x).

Fatigue Life Distribution

PDF √
x
β
+

√
β
x

2γx)
φ


√

x
β
−

√
β
x

γ


CDF

Φ


√

x −
√

1
x

γ


where φ(x) and Φ(x) are respectively the PDF and CDF of the standard nor-

mal distribution.

A-25

Range 0 < x < ∞.

Scale parameter, β > 0.

Shape parameter γ > 0.

Notes: This is also known as the Birnbaum Saunders distribution.

Fatigue Life Distribution with threshold

PDF √
x−θ
β
+

√
β

x−θ

2γ (x − θ)
φ


√

x−θ
β
−

√
β

x−θ

γ


CDF

Φ


√

x − θ −
√

1
x−θ

γ


where φ(x) and Φ(x) are respectively the PDF and CDF of the standard nor-

mal distribution.

Range 0 < x − θ < ∞.

Scale parameter, β > 0.

Shape parameter γ > 0.

Threshold parameter θ < min(x).

Notes: This is also known as the Birnbaum Saunders distribution.

Fisk Distribution

PDF

(β/α)(x/α)β−1[
1 + (x/α)β

]2

CDF

1
1 + (x/α)−β

A-26

Appendices

Range 0 < x < ∞.

Scale parameter α > 0.

Shape parameter, β > 0.

Fisk Distribution with threshold

PDF

(β/α)((x − θ)/α)β−1[
1 + ((x − θ)/α)β

]2

CDF

1
1 + ((x − θ)/α)−β

Range 0 < x − θ < ∞.

Scale parameter α > 0.

Shape parameter, β > 0.

Threshold parameter θ < min(x).

Folded Normal Distribution

PDF

√
2π
σ

cosh(µ/σ2)e−(x2+µ2)/2σ2

CDF

Φ

(x − µ
σ

)
− Φ

(
−x − µ
σ

)
where Φ(x) is the CDF of the standard normal distribution.

Range 0 ≤ x < ∞.

Location parameter, µ, the mean.

Scale parameter, σ > 0, the standard deviation.

A-27

Frechet Distribution

PDF

(β/α)(α/x)1+βe−(α/x)β

CDF

e−(α/x)β

Range 0 ≤ x < ∞.

Scale parameter, α > 0.

Shape parameter β > 0.

Frechet Distribution with threshold

PDF

(β/α)(α/(x − θ))1+βe−(α/(x−θ))β

CDF

e−(α/(x−θ))β

Range 0 ≤ x − θ < ∞.

Scale parameter, α > 0.

Shape parameter β > 0.

Threshold parameter θ < min(x).

Gamma Distribution

PDF

(x/α)β−1e−x/α

αΓ(β)

CDF ∫ x/α

0

e−ttβ−1

Γ(β)
dt

A-28

Appendices

where Γ(β) is the the Gamma function.

Range 0 ≤ x < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

Gamma Distribution with threshold

PDF

[(x − θ)/α])β−1e−(x−θ)/α

αΓ(β)

CDF ∫ (x−θ)/α

0

e−ttβ−1

Γ(β)
dt

where Γ(β) is the the Gamma function:

Range 0 ≤ x − θ < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

Threshold parameter θ < min(x).

Generalized Error Distribution

PDF

β

2αΓ(1/β)
e−(|x−µ|/α)β

CDF

1
2
+ sign(x − µ)

γ
(
1/β,

(
|x−µ|
α

)β)
2Γ(1/β)

where Γ(β) is the the Gamma function and γ(k, z) is the lower incomplete

Gamma function.

A-29

Range −∞ ≤ x < ∞.

Location parameter µ. Scale parameter α > 0.

Shape parameter β > 0.

Notes: This is also known as the Exponential Power distribution or the Gen-

eralized Normal distribution.

Generalized Gamma Distribution

PDF

px(pk−1)e(−x/αp)

αkpΓ(k)

CDF

γ(k, (x/α)p)

where Γ(β) is the the Gamma function and γ(k, z) is the lower incomplete

Gamma function.

Range 0 ≤ x < ∞.

Scale parameter α > 0.

Shape1 parameter k > 0.

Shape1 parameter p > 0.

Generalized Gamma Distribution with threshold

PDF

p(x − θ)(pk−1)e(−(x−θ)/αp)

αkpΓ(k)

CDF

γ(k, [(x − θ)/α]p)

where Γ(β) is the the Gamma function and γ(k, z) is the lower incomplete

Gamma function.

A-30

Appendices

Range 0 ≤ x − θ < ∞.

Scale parameter α > 0.

Shape1 parameter k > 0.

Shape1 parameter p > 0.

Threshold parameter θ < min(x).

Generalized Logistic Distribution

PDF

αe−(x−µ)/σ

σ(1 + e−(x−µ)/σ)1+α

CDF

1
(1 + e−(x−µ)/σ)α

Range −∞ < x < ∞.

Location parameter, µ.

Scale parameter σ > 0.

Skew parameter α, < 1 for left skew, > 1 for right skew.

Notes: This is a Type I Generalized Logistic distribution; it is also known as

the Skew-Logistic distribution.

Generalized Pareto Distribution

PDF

1
α

(
1 + β

x − µ
α

)−(1+1/β)

CDF

1 −
(
1 + β

x − µ
α

)−1/β

Range 0 < x < ∞.

Location parameter µ.

Scale parameter α > 0.

Shape parameter β > 0.

A-31

Half Normal Distribution

PDF

√
2/π
σ2 e−x2/2σ2

CDF ∫ x

−∞

√
2/π
σ

e−t2/2σ2
dt − 1

Range 0 ≤ x < ∞.

Scale parameter, σ > 0, the standard deviation.

Half Normal Distribution with threshold

PDF

√
2/π
σ2 e−(x−θ)2/2σ2

CDF ∫ x−θ

−∞

√
2/π
σ

e−t2/2σ2
dt − 1

Range 0 ≤ x − θ < ∞.

Scale parameter, σ > 0, the standard deviation.

Threshold parameter θ < min(x).

Inverse Gamma Distribution

PDF

αβ

Γ(β)
x−β−1e−α/x

CDF

γ(β, α/x)
Γ(β)

A-32

Appendices

where Γ(s) is the the gamma function, and γ(s, x) is the lower incomplete

gamma function.

Range 0 ≤ x < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

Inverse Gamma Distribution with threshold

PDF

αβ

Γ(β)
(x − θ)−β−1e−α/(x−θ)

CDF

γ(β, α/(x − θ))
Γ(β)

where Γ(s) is the the gamma function, and γ(s, x) is the incomplete gamma

function.

Range 0 ≤ x − θ < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

Threshold parameter θ < min(x).

Inverse Gaussian Distribution

PDF [
λ

2πx3

]1/2

e−λ(x−µ)2/(2µ2 x)

CDF

Φ

√λx
(

x
µ
− 1

) + e2λ/µΦ

−√
λ

x

(
x
µ
+ 1

)
where Φ(x) is the CDF of the standard normal distribution.

A-33

Range 0 < x < ∞.

Location parameter, µ, the mean.

Shape parameter λ > 0.

Johnson SB Distribution

PDF

δe−.5(γ+δ ln(z/(1−z)))2

λ
√

2πz(1 − z)

CDF

Φ

[
γ + δ ln

(z
1 − z

)]
where z = (x − η)/λ and Φ(x) is the CDF of the standard normal distribution.

Range η < x < η + λ.
Location parameter, η, the mean.

Scale parameter λ > 0.

Shape1 parameter γ

Shape2 parameter δ > 0

Johnson SL Distribution

PDF

δφ
[
γ + δ ln

(
x−η
λ

)]
(x − η)

CDF

Φ

[
γ + δ ln

(x − η
λ

)]
where φ(x) and Φ(x) are respectively the PDF and CDF of the standard nor-

mal distribution.

Range η < x < ∞.

A-34

Appendices

Location parameter, η, the mean.

Scale parameter λ = 1.

Shape1 parameter γ

Shape2 parameter δ > 0

Johnson SU Distribution

PDF

δe−.5(γ+δ sinh−1(z))2

λ
√

2π(z2 + 1)

CDF

Φ(γ + δ sinh−1(z))

where z = (x − η)/λ and Φ(x) is the CDF of the standard normal distribution.

Range −∞ < x < ∞.

Location parameter, η, the mean.

Scale parameter λ > 0.

Shape1 parameter γ

Shape2 parameter δ > 0

Laplace Distribution

PDF

1
2σ

e−
|x−µ|
σ

CDF

1
2σ

e−
µ−x
σ if x < µ

1
2σ

e−
x−µ
σ if x ≥ µ

Range −∞ < x < ∞.

A-35

Location parameter, µ, the mean.

Scale parameter σ > 0.

Largest Extreme Value Distribution

PDF

1
σ

e−(x−µ)/σe−e−(x−µ)/σ

CDF

e−e−(x−µ)/σ

Range −∞ < x < ∞.

Location parameter, µ, the mode.

Scale parameter σ > 0.

Notes: The Gumbel distribution is equivalent to the Largest Extreme Value.

Levy Distribution

PDF √
σ

2π
e−σ/2x

x3/2

CDF

erfc
(√
σ/2x

)
Range 0 < x < ∞.

Scale parameter σ > 0.

LogGamma Distribution

PDF

ln(x)β−1e− ln(x)/α

xαβΓ(β)

A-36

Appendices

CDF ∫ ln(x)/α

0

e−ttβ−1

Γ(β)
dt

where Γ is the gamma function.

Range 0 ≤ x < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

LogGamma Distribution with threshold

PDF

ln(x − θ)β−1e− ln(x−θ)/α

(x − θ)αβΓ(β)

CDF ∫ ln(x−θ)/α

0

e−ttβ−1

Γ(β)
dt

where Γ is the gamma function.

Range 0 < x − θ < ∞.

Scale parameter α > 0.

Shape parameter β > 0.

Threshold parameter θ < min(x).

Logistic Distribution

PDF

e(x−µ)/σ

σ(1 + e(x−µ)/σ)2

CDF

1
1 + e−(x−µ)/σ

A-37

Range −∞ < x < ∞.

Location parameter, µ, the mean.

Scale parameter σ > 0.

Loglogistic Distribution

PDF

e(ln(x)−µ)/σ

xσ(1 + e(ln(x)−µ)/σ)2

CDF

1
1 + e−(ln(x)−µ)/σ

Range 0 < x < ∞.

Location parameter, µ, the mean.

Scale parameter σ > 0.

Loglogistic Distribution with threshold

PDF

e(ln(x−θ)−µ)/σ

(x − θ)σ(1 + e(ln(x−θ)−µ)/σ)2

CDF

1
1 + e−(ln(x−θ)−µ)/σ

Range 0 < x − θ < ∞.

Location parameter, µ, the mean.

Scale parameter σ > 0.

Threshold parameter θ < min(x).

LogNormal Distribution

PDF

1

x
√

2πσ2
e−.5(ln(x)−µ)2/σ2

A-38

Appendices

CDF ∫ x

−∞

1

tσ
√

2π
e−.5(ln(t)−µ)2/σ2

dt

Range 0 < x < ∞.

Scale parameter, µ, the mean of ln(x) .

Shape parameter, σ > 0, the standard deviation of ln(x) .

LogNormal Distribution with threshold

PDF

1

(x − θ)
√

2πσ2
e−.5(ln(x−θ))−µ)2/σ2

CDF ∫ x−θ

−∞

1

tσ
√

2π
e−.5(ln(t)−µ)2/σ2

dt

Range 0 < x − θ < ∞.

Scale parameter, µ, the mean of ln(x) .

Shape parameter, σ > 0, the standard deviation of ln(x) .

Threshold parameter θ < min(x).

Maxwell Boltzmann Distribution

PDF √
2
π

x2e−x2/(2a2)

a3

CDF

γ

(
1.5,

x2

2a2

)
where γ(s, z) is the lower incomplete Gamma function.

A-39

Range 0 < x < ∞.

Scale parameter a > 0.

Non-Central Chi-Squared Distribution

PDF

.5e−(x+.5λ)
(x
λ

).25ν−.5
I.5ν−1(

√
λx)

CDF

∞∑
j=0

e−.5λ
(.5λ) j

j!
γ(j + .5ν, .5x)
Γ(j + .5k)

where Γ(s) is the gamma function, γ(s, x) is the lower incomplete gamma func-

tion. and I is the modified Bessel function of the first kind.

Range 0 ≤ x < ∞.

Shape parameter ν > 0.

Non-centrality parameter λ > 0.

Non-Central Chi-Squared Distribution with threshold

PDF

.5e−(x−θ+.5λ)
(x − θ
λ

).25ν−.5

I.5ν−1(
√
λ(x − θ))

CDF

∞∑
j=0

e−.5λ
(.5λ) j

j!
γ(j + .5ν, .5(x − θ))
Γ(j + .5k)

where Γ(s) is the gamma function, γ(s, x) is the lower incomplete gamma func-

tion. and I is the modified Bessel function of the first kind.

Range 0 ≤ x − θ < ∞.

Shape parameter ν > 0.

A-40

Appendices

Non-centrality parameter λ > 0.

Threshold parameter θ < min(x).

Non-Central F Distribution

PDF

∞∑
k=0

e−.5λ(.5λ)k

B (.5ν2, .5ν1 + k) k!

(
ν1
ν2

).5ν1+k (
ν2

ν2 + ν1x

).5(ν1+ν2)+k

x.5ν1−1+k

CDF

∞∑
j=0

(.5λ) j e−.5λ

j!
B(z; .5ν1 + j, .5ν2)

where

z =
ν1 x
ν1x + ν2

where B(a, b) is the beta function, and B(z; a, b) is the incomplete beta func-

tion.

Range 0 ≤ x < ∞.

Shape parameter ν1 > 0.

Shape parameter ν2 > 0.

Non-centrality parameter λ > 0.

Non-Central F Distribution with threshold

PDF

∞∑
k=0

e−.5λ(.5λ)k

B (.5ν2, .5ν1 + k) k!

(
ν1
ν2

).5ν1+k (
ν2

ν2 + ν1(x − θ)

).5(ν1+ν2)+k

(x − θ).5ν1−1+k

CDF

∞∑
j=0

(.5λ) j e−.5λ

j!
B(z; .5ν1 + j, .5ν2)

A-41

where

z =
ν1(x − θ)
ν1(x − θ) + ν2

where B(a, b) is the beta function, and B(z; a, b) is the incomplete beta func-

tion.

Range 0 ≤ x − θ < ∞.

Shape parameter ν1 > 0.

Shape parameter ν2 > 0.

Non-centrality parameter λ > 0. Threshold parameter θ < min(x).

Non-Central T Distribution

PDF

ν.5νe−νλ
2/(2x2+2ν)

√
πΓ(.5ν) 2.5(ν−1)(x2 + ν).5(ν+1)

∫ ∞

0
tνe−.5(t−λx/

√
x2+ν)2

dt

CDF (x ≥ 0)

Φ(−λ) +
1
2

∞∑
j=0

[
p jIz

(
j +

1
2
,
ν

2

)
+ q jβz

(
j + 1,

ν

2

)]

where

z =
x2

x2 + ν

p j =
e−.5λ

2

j!

(
λ2

2

) j

q j =
λe−.5λ

2

√
2Γ(j + 3/2)

(
λ2

2

) j

and whereΦ is the standard normal CDF, Γ is the gamma function, and Iz(a, b)
is the regularized incomplete beta function.

A-42

Appendices

Range −∞ ≤ x < ∞.

Shape parameter ν > 0.

Non-centrality parameter λ > 0.

Normal Distribution

PDF

1
√

2πσ2
e−.5(x−µ)2/σ2

CDF ∫ x

−∞

1
√

2πσ2
e−.5(t−µ)2/σ2

dt

Range −∞ < x < ∞.

Location parameter, µ, the mean.

Scale parameter, σ > 0, the standard deviation.

Pareto Distribution

PDF

α xαm
xα+1

CDF

1 −
(xm

x

)α
Range xm < x < ∞.

Location parameter xm > 0, the minimum of x.

Shape parameter α > 0

Pearson III Distribution

PDF

[(x − µ)/α])β−1e−(x−µ)/α

αΓ(β)

A-43

CDF ∫ (x−µ)/α

0

e−ttβ−1

Γ(β)
dt

where Γ(β) is the the Gamma function:

Range 0 ≤ x − µ < ∞.

Location parameter µ < min(x).
Scale parameter α > 0.

Shape parameter β > 0.

PERT Distribution

PDF

1
B(α, β)

xα−1(1 − x)β−1

CDF ∫ x

−∞

1
B(α, β)

tα−1(1 − t)β−1dt

where B is the Beta function.

Range lb ≤ z ≤ ub.

Parameter lb : lb < zmin, the lower bound of z.
Parameter ub : zmax < ub, the upper bound of z.
Parameter η : lb < η < ub, the mode of z.

Notes: The PERT argument z and the three parameters, lb, ub and η are

transformed using the PERT transform; the resulting argument, x is distributed

Beta, with shape parameters α and β.

Power Distribution

PDF

ν(x − a)ν−1

(b − a)ν

A-44

Appendices

CDF

(x − a)ν

(b − a)ν

Range a ≤ x ≤ b.

Lowerbound parameter a > 0.

Upperbound parameter b.

Shape parameter ν > 0.

Rayleigh Distribution

PDF

x
α2 e−x2/(2α2)

CDF

1 − e−x2/(2α2)

Range 0 ≤ x < ∞.

Scale parameter, α > 0.

Reciprocal Distribution

PDF

1
x(ln(b) − ln(a))

CDF

ln(x) − ln(a)
ln(b) − ln(a)

Range a ≤ x ≤ b.

Lowerbound parameter a > 0.

Upperbound parameter b.

A-45

Skew Normal Distribution

PDF

2
σ
Φ

(
α(x − µ)
σ

)
φ
(x − µ
σ

)
CDF

2 cdfbvn
(

x − µ
σ
, 0,

−α
√

1 + α2

)
where φ(x) and Φ(x) are respectively the PDF and CDF of the standard nor-

mal distribution, and cdfbvn is the cumulative standardized bivariate normal

distribution.

Range −∞ < x < ∞.

Location parameter, µ.

Scale parameter σ > 0.

Skew parameter α, negative for left skew, positive for right skew.

Smallest Extreme Value Distribution

PDF

1
σ

e(x−µ)/σe−e(x−µ)/σ

CDF

1 − e−e(x−µ)/σ

Range −∞ < x < ∞.

Location parameter, µ, the mode.

Scale parameter σ > 0.

Student’s T Distribution

PDF

Γ(ν+1
2)

√
νπΓ(ν2)

(
1 +

x2

ν

)−(ν+1
2)

A-46

Appendices

CDF

1
2
+ xΓ

(
ν + 1

2

)
2F1

(
1
2 ,
ν+1

2 ; 3
2 ;− x2

ν

)
√
πν Γ(ν2)

where 2F1 is the hypergeometric function.

Range −∞ < x < ∞.

Shape parameter ν > 0, degrees of freedom.

Student’s T Distribution with location and scale

PDF

1
α
√
π ν

Γ(.5(ν + 1))
Γ(.5ν)

(
να2

(x − µ)2 + να2

).5(ν+1)

CDF

.5 + .5 Iz(.5, .5ν) x ≥ 0

.5 − .5 Iz(.5, .5ν) x < 0

where

z =
(x − µ)2

(x − µ)2 + να2

and where Γ is the gamma function, and Iz(a, b) is the regularized incomplete

beta function.

Range −∞ ≤ x < ∞.

Location parameter µ.

Scale parameter α > 0.

Shape parameter ν > 0.

A-47

Triangular Distribution

PDF

2(x − a)
(b − a)(c − a)

for a ≤ x ≤ c

2(b − x)
(b − a)(b − c)

for c ≤ x ≤ b

CDF

(x − a)2

(b − a)(c − a)
for a ≤ x ≤ c

1 −
(b − x)2

(b − a)(b − c)
for c ≤ x ≤ b

Range a ≤ x ≤ b.

Parameter a : a ≤ xmin, the lower bound of x.

Parameter b : xmax ≤ b, the upper bound of x.

Parameter c : a < c < b, the mode of x.

Uniform Distribution

PDF

1
b − a

CDF

x − a
b − a

Range a ≤ x ≤ b.

Parameter a : a ≤ xmin, the lower bound of x.

Parameter b : xmax ≤ b, the upper bound of x.

A-48

Appendices

Von Mises Distribution

PDF

eκ cos(x−µ)

2πI0(κ)

CDF

1
2π

x+
2

I0(κ)

∞∑
j=1

I j(κ)
sin[j(x−µ)]

j


where I j(x) is the modified Bessel function of order j.

Range 0 ≤ x < 2π.
Location parameter, µ : 0 ≤ µ ≤ 2π.
Shape parameter κ > 0.

Weibull Distribution

PDF

βxβ−1

αβ
e−(x/α)β

CDF

1 − e−(x/α)β

Range 0 ≤ x < ∞.

Scale parameter, α > 0, the characteristic life.

Shape parameter β > 0.

Weibull Distribution with threshold

PDF

βxβ−1

αβ
e−[(x−θ)/α]β

A-49

CDF

1 − e−[x−θ)/α]β

Range 0 ≤ x − θ < ∞.

Scale parameter, α > 0.

Shape parameter β > 0.

Threshold parameter θ < min(x).

A-50

Appendices

Discrete Distributions

For x to be distributed by a discrete distribution, x must only take discrete values over the spec-

ified range. With the exception of the Step distribution, x must be integer.

Bernoulli Distribution

The Bernoulli distribution takes a value 1 with probability p and value 0 with

probability 1 − p.

PDF

xp + (1 − x)(1 − p)

CDF

1 − p + px

Support x ∈ {0, 1}
Probability parameter, p : 0 ≤ p ≤ 1.

Binomial Distribution

The binomial pdf is the probability of x successes in n independent trials,

where p is the probability of success in any given trial.

PDF (
n
x

)
px(1 − p)n−x

CDF

I1−p(n − x, x + 1)

where Ix(a, b) is the regularized incomplete Beta function.

Support x ∈ {0, . . . , n}
Probability parameter, p : 0 ≤ p ≤ 1.

Trials parameter, n : n > 0.

A-51

Geometric Distribution

The geometric pdf is the probability of x failures before a success, where p is

the probability of success in any given trial.

PDF

p(1 − p)x

CDF

1 − (1 − p)x+1

Support x ∈ {1, 2, 3, . . .}
Probability parameter, p : 0 ≤ p ≤ 1.

Hypergeometric Distribution

The Hypergeometric pdf is the probability of drawing x successes in n draws,

without replacement, from a population of size N which contains m successes.

PDF (
m
x

)(
N−m
n−x

)(
N
n

)
CDF

x∑
i=0


(

m
i

)(
N−m
n−i

)(
N
n

) 
Support x ∈ {1, 2, 3, . . .}
Population parameter, N : N > 0.

Success parameter, m : m > 0.

Sample parameter, n : n > 0.

A-52

Appendices

Logarithmic Distribution

The Logarithmic pdf is a one parameter generalized power series distribution.

PDF

−px

x ln(1 − p)

CDF

1 +
B(p; x + 1, 0)

ln(1 − p)

where B(x; a,b) is the incomplete beta function.

Support x ∈ {1, 2, 3, . . .}
Probability parameter, p : 0 ≤ p ≤ 1.

Negative Binomial Distribution

The Negative Binomial pdf is the probability of achieving r failures before the

xth success, with p being the probability of a success.

PDF (
x + r − 1

r − 1

)
(1 − p)r px

CDF

1 − Ip(x + 1, r)

where Ix(a, b) is the regularized incomplete Beta function.

Support x ∈ {1, 2, 3, . . .}
Probability parameter, p : 0 ≤ p ≤ 1.

Failure parameter, r : r > 0.

A-53

Poisson Distribution

The Poisson pdf is the probability x events occurring within a period, where λ

is the expected number of events in that period.

PDF

λx

x!
e−λ

CDF

e−λ
x∑

i=0

(
λi

i!

)

Support x ∈ {1, 2, 3, . . .}
Event parameter, λ : r > 0, the mean of x

Step Distribution

The step pdf is the same for each step.

PDF

s
b − a + s

CDF

x − a + s
b − a + s

Support x ∈ {a, . . . , b}
Parameter a : a ≤ xmin, the lower bound of x.

Parameter b : xmax ≤ b, the upper bound of x.

Parameter s, the stepsize.

A-54

Appendices

Uniform Distribution

The Uniform pdf is the same for each outcome.

PDF

1
b − a + 1

CDF

x − a + 1
b − a + 1

Support x ∈ {a, . . . , b}
Parameter a : a ≤ xmin, the lower bound of x.

Parameter b : xmax ≤ b, the upper bound of x.

A-55

Functions

Beta Function

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

Gamma Function

Γ(β) =
∫ ∞

0
e−ttβ−1dt (β > 0)

Incomplete Beta Function

B(x; a, b) =
∫ x

0
ta−1 (1 − t)b−1 dt (a, b > 0, 0 ≤ x ≤ 1))

Incomplete Beta Function (regularized)

Ix(a, b) =
B(x; a, b)

B(a, b)

Incomplete Gamma Function (lower)

γ(s, x) =
∫ x

0
ts−1 e−t dt

Incomplete Gamma Function (regularized)

P(s, x) =
γ(s, x)
Γ(s)

Modified Bessel Function

Iα(x) =
∞∑

m=0

1
m!Γ(m + α + 1)

(x
2

)2m+α

A-56

Appendices

References

Chou, C., & H. Liu, (1998). “Properties of the half-normal distribution and its application to

quality control”, Journal of Industrial Technology Vol. 14(3) pp 4-7

Chou,Y., A.M. Polansky, and R.L. Mason (1998). “Transforming Non-Normal Data to Normality

in Statistical Process Control,” Journal of Quality Technology, Vol. 30(2), pp. 133-141.

David, H.A. (1981). Order Statistics, John Wiley & Sons, New York.

Giesbrecht, F. and A.H. Kempthorne (1966). “Maximum Likelihood Estimation in the Three-

parameter Lognormal Distribution”, Journal of the Royal Statistical Society, B 38, pp. 257-264.

W.H.Greene Econometric Analysis 4th Ed Prentice Hall, New Jersey.

Johnson, N. L., and S. Kotz, S. (1990). “Use of moments in deriving distributions and some

characterizations”, Mathematical Scientist, Vol. 15, pp. 42-52.

Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions, Vol.

1, Wiley-Interscience.

Lockhart, R.A. and M.A. Stephens (1994).“Estimation and Tests of Fit for the Three-parameter

Weibull Distribution”, Journal of the Royal Statistical Society, Vol.56(3), pp. 491-500.

Nocedal, J. and S.J. Wright (1999). Numerical Optimization, Springer-Verlag, New York. John-

son, N.L. and S. Katz,(1970).Distributions in Statistics: Continuous Uniuariate. Distributions–I,

Wiley, New York.

Tadikamalla,P.,R. (1980). “Notes and Comments: On Simulating Non-Normal Distributions”,

Psychometrika, Vol. 45(2), pp. 273-279.

Wang, J.Z. (2005). “ A note on Estimation in the Four Paramter Beta Distribution”, Comm in

Stats Simulation and computation, Vol. 34 pp. 495-501.

A-57

Index B

B-1

Index

Index

?, 6-52

#LIST, 6-188

#NOLIST, 6-250

ID, 6-305

PSTAR, 6-32

TSTAR, 6-32

2SLS, 6-159, 6-243, 6-269, 6-444

3SLS, 6-159, 6-243, 6-446

ACF, A-11

ACV, A-11

AGARCH, 6-2, 6-140

AMORT, 6-4

analysis of variance, 6-14, 6-389

ANALYZ, 6-6

Andrew’s wave function, 6-337

ANN, 6-9

ANOVA, 6-14, 6-410

application modules, A-7

AR, 6-18, 6-208, 6-269

ARCCOSH, A-11

ARCH, 6-21, 6-22, 6-24, 6-140, 6-269

ARCSINH, A-11

ARCTANH, A-11

ARFIMA, 6-26

ARIMA, 6-29, 6-35, 6-125

ARMA, 6-37

arma filter, 6-113

ascii file, 6-274, 6-350

autocorrelation function, A-11

autocovariance function, A-11

automatic differentiation, 6-192, 6-241, 6-

277, 6-352, A-9

autoregressive estimation, 6-18

autoregressive integrated moving average,

6-29, 6-35

autoregressive moving average, 6-37

background operation, 3-7, 4-2

batch mode, 3-7, 4-2

Bayesian estimation, 6-207

Bernoulli distribution, 6-363

beta distribution, 6-362

beta model, 6-39

beta4 distribution, 6-362

BETA D, 6-39

binomial distribution, 6-363

bitwise arithmetic, 6-41

bivariate probit, 6-316

bootstrap, 6-211, 6-337

Boxcox distribution, 6-363

Boxcox transform, 6-251

BROYDEN, 6-359

Burr distribution, 6-363

BY, 6-165

CATALOG, 6-43

Index-1

Index

Cauchy distribution, 6-363

CDF, 6-45

CDFI, 6-46

CDFMVN, 6-47

CENMEANC, A-11

censored mean, A-11

censored standard deviation, A-12

CENSTDC, A-12

chi-squared distribution, 6-363

chi-squared scaled distribution, 6-363

CLUSTER, 6-49

cointegration, 6-392, 6-393, 6-398

colour, 6-277

column width, 6-277

combination, A-12

COMBS, A-12

command

file, 3-2

summary, 5-2

syntax, 5-1

COMMENT, 6-52

compensating variation, 6-438

compressed, 3-4

concept, 1-1

conditional variance, 6-125

configuration, 2-4, 2-5, 3-4

CONST, 6-54

constrained optimization, 6-94, 6-243

consumer surplus, 6-438

convergence, 6-240, 6-337

Cook’s D measure, 6-125

COPULA, 6-56

CORC, 6-19

CORDIM, 6-58

CORR, 6-60

correlation dimension, 6-58

correlation matrix, 6-61

correlogram, 6-61

COVA, 6-61, 6-122, 6-437

covariance matrix, 6-61

COX, 6-64

CREATE, 6-67, 6-237, 6-240

CROSSTAB, 6-69

cumulative density function, 6-45, 6-362

data

file, 6-273

generating process, 6-76

path, 3-2

data transformation, 6-149, 6-277

DBDC, 6-70

deadweight loss, 6-438

debug, 6-277

DECONV, A-12

Delta method, 6-6

DENOISE, 6-72

detrend filter, 6-113

DFBETAS, 6-125

DFFITS, 6-125

DGP, 6-76

diagnostics, 6-270, 6-308, 6-387, 6-414

DIFFER, 6-359

difference filter, 6-113

DISABLE, 6-249

distributional testing, 6-403

DIVISIA, 6-82

DOT, 6-200

DROP, 6-83

DUMMY, 6-84

DURATION, 6-85

duration models, 6-85, 6-378

dynamic forecast, 6-125, 6-358

e–scaling, 6-62, 6-383

editor, 3-4

Index-2

Index

efficient portfolio, 6-135

EGARCH, 6-89, 6-140

elasticities, 6-270

END, 6-93

EQCON, 6-94, 6-133, 6-243

EQSUB, 6-96, 6-133, 6-241

equivalent variation, 6-438

ERF distribution, 6-364

error components model, 6-282

error correction model, 6-398

error processing, 6-277, A-2

EVAL, 6-98

Excel

configuration, 2-4

file, 6-350

process, 6-277

EXPAND, 6-99

EXPON, 6-101

exponential distribution, 6-364

exponential model, 6-101

EXSMOOTH, 6-103, 6-125

F distribution, 6-364

F scaled distribution, 6-364

F statistic, 6-394

failure to improve, 6-242

fatigue life distribution, 6-364

feasible multinomial probit, 6-119

FETCH, 6-108, 6-374

FEVAL, 6-109

FIGARCH, 6-110

FILTER, 6-113

FIML, 6-116, 6-239, 6-285

fitted value, 6-125

fixed effects model, 6-282

FMNP, 6-119

FMTLIST, 6-122

folded normal distribution, 6-364

FORCST, 6-19, 6-22, 6-32, 6-106, 6-124,

6-178, 6-259, 6-265, 6-324

forecast error decomposition, 6-430

forecast standard error, 6-125

formula evaluation, 6-109

FPF, 6-129

Frechet distribution, 6-364

FREQ, 6-131

FRML, 6-132, 6-184, 6-239, 6-255, 6-258,

6-269, 6-308

FRONTIER, 6-135

frontier production function, 6-129

function

cdf, 6-45, 6-362

cdfi, 6-46, 6-362

llf, 6-362

pdf, 6-290, 6-362

rnd, 6-328, 6-362

rndgen, 6-329

FV, 6-137

GA, 6-147

gamma distribution, 6-365

gamma function, A-14

gamma model, 6-138

GAMMA D, 6-138

GARCH, 6-22, 6-89, 6-140

GAUSS, 6-145

command, 6-145

files, 6-274

variables, A-5

Gauss Newton, 6-19

GAUSS CFG, 2-6

GAUSSPlot, 6-162, 6-277, 6-305

GAUSSX

commands, 3-5

Index-3

Index

files, 6-274

mode, 2-3

syntax, 5-12

tools, 3-6

GAUSSXPATH, 2-4

GENALG, 6-147

generalized error distribution, 6-365

generalized gamma distribution, 6-365

generalized least squares, 6-376, 6-446

generalized logistic distribution, 6-365

generalized Pareto distribution, 6-365

genetic algorithm, 6-147, 6-242

GENR, 6-149, 6-184, 6-255

geometric distribution, 6-365

GETM, 6-151

GINI, 6-152

global optimization, 6-153, 6-242

GLOBOPT, 6-153

GLS, 6-209, 6-437

GMM, 6-158, 6-239, 6-285

GO, 6-153

GOMPERTZ, 6-156

GRADH, 6-277

GRADIENT, 6-219

GRAPH, 6-162

graphic display, 6-277

GROUP, 6-165

GUMBEL, 6-166

Gumbel distribution, 6-366

half normal distribution, 6-366

Hat vector, 6-125

hazard models, 6-85, 6-378

HECKIT, 6-168

Heckman, 6-325

HESSIAN, 6-219

Hessian, 6-243

heteroscedasticity, 6-392, 6-395

Hodrick-Prescott filter, 6-114

Huber’s t function, 6-337

hypergeometric distribution, 6-366

IAND, 6-41

IEQV, 6-41

IGARCH, 6-140, 6-171

impulse response function, 6-430

INOT, 6-41

INST, 6-243

installation, 2-1, 2-3

installing new procedures, A-4

instrumental variables, 6-243

insufficient memory, A-8

insufficient work space, 6-237

internet resources, 3-6

INTERP, A-12

INTERP2, A-13

interpolation, A-12, A-13

inverse convolution, A-12

inverse cumulative density function, 6-46,

6-362

inverse difference filter, 6-113

inverse function, 6-173

inverse Gaussian distribution, 6-366

inverse Gaussian model, 6-174

inverse hypobolic, A-11

INVERT, 6-173

invertibility, 6-229

INVGAUSS, 6-174

IOR, 6-41

ISCHAR, A-13

ISEMPTY, A-13

IXOR, 6-41

jackknife, 6-211

Jacobian, 6-117, 6-359

Index-4

Index

Johnson SB distribution, 6-366

Johnson SL distribution, 6-366

Johnson SU distribution, 6-366

Johnson transform, 6-251

KALMAN, 6-176, 6-181, 6-269

Kaplan-Meier, 6-378

KEEP, 6-183

KERNEL, 6-259

Krinsky Robb method, 6-6

kurtosis, 6-417

LAD, 6-337

LAG, 6-150, 6-184, 6-270, 6-337

Laplace distribution, 6-366

largest extreme value, 6-166

largest extreme value distribution, 6-366

latin hypercube sample, 6-185

least absolute deviation, 6-337

least square dummy variable, 6-282

Levy distribution, 6-367

LHS, 6-185

likelihood function, 6-362

line search, 6-242

linear filter, 6-114

linear programming, 6-201

linear restrictions, 6-395

lines, 3-3

LINES ON, A-2

LIST, 6-189

LOAD, 6-191

load matrix, 6-151

LOADPROC, 6-192

local Whittle model, 6-440

log-gamma distribution, 6-367

log-logistic distribution, 6-367

log-normal distribution, 6-367

logarithmic distribution, 6-367

LOGISTIC, 6-193

Logistic distribution, 6-367

logistic model, 6-193

LOGIT, 6-195, 6-322

LOGLOG, 6-196

loglogistic model, 6-196

LOGNORM, 6-198

lognormal model, 6-198

LOOP, 6-200

looping, 6-200

LP, 6-201

LYAPUNOV, 6-203

Lyapunov exponent, 6-203

macros, 6-241

Maple, 3-4, 3-6, A-9

Markov Chain Monte Carlo, 6-207

Markov switching models, 6-230

Markowitz model, 6-135

Mathematica, 3-4, 3-6

matrix expansion, 6-99, A-14

matrix print, A-13

maximum entropy, 6-214

maximum likelihood, 6-218

MAXIT, 6-240

MAXITW, 6-240

MAXLAG, 6-184, 6-277

MAXLINES, 6-277, 6-315

Maxwell Boltzmann distribution, 6-367

MCALC, 6-206

MCMC, 6-207

MCS, 6-211

ME, 6-214

memory, 6-277

memory management, 6-67, 6-237

MGARCH, 6-215

Mill’s ratio, 6-125, 6-324

Index-5

Index

missing value, 6-150, 6-191, 6-249, 6-277

misspecification, 6-406

ML, 6-218, 6-239, 6-259, 6-285, 6-437

MNL, 6-223

MNP, 6-208, 6-225

Monte Carlo simulation, 6-211

MPRINT, A-13

MROOT, 6-229

MSM, 6-230

multinomial logit, 6-223

multinomial probit, 6-225

multiple response optimization, 6-340

multisector data, 6-200

multivariate normal, 6-232

Murphy Topel, 6-244

MVN, 6-232

MVRND, 6-233

negative binomial, 6-235

negative binomial distribution, 6-367

NEGBIN, 6-235

Nelder Meade algorithm, 6-242

Nelson-Aalen, 6-378

network support, 2-4, 2-6

Newey West, 6-243

Newton Raphson algorithm, 6-242

NFACTOR, 6-237

NLS, 6-238, 6-259, 6-285, 6-376

NMV, 6-150, 6-249

noise filter, 6-72

non-linear estimation, 6-238

non-nested models, 6-399

non-parametric test, 6-414

noncentral chi-squared distribution, 6-368

noncentral F distribution, 6-368

noncentral T distribution, 6-368

nonparametric estimation, 6-255

NOREPL, 6-149, 6-191

NORMAL, 6-251, 6-253

normal distribution, 6-368

Normal model, 6-253

normalization, 6-251

NOSELECT, 6-240

NPE, 6-255

NPR, 6-263, 6-269

NUMDATE, 6-268

OLS, 6-269

OPEN, 6-122, 6-273

optimization algorithm, 6-241

OPTION, 6-149, 6-277

ordered logit, 6-279, 6-322

ordered probit, 6-280, 6-322

ORDLGT, 6-279, 6-322

ORDPRBT, 6-280, 6-322

output, 6-277

output file, 3-2, 6-277

OUTW132, 6-277

OUTW80, 6-277

overidentifying restrictions, 6-396

PAGE, 6-281

PANEL, 6-282

panel data, 6-200, 6-282

PARAM, 6-6, 6-239, 6-285

parameters - holding, 6-241

parametric test, 6-387

PARETO, 6-288

Pareto distribution, 6-368

parse, 3-3

partial autocorrelogram, 6-61

partial least squares, 6-307

PDF, 6-290

PDL, 6-270, 6-298, 6-337

PDROOT, 6-300

Index-6

Index

PEARSON, 6-301

Pearson distribution, 6-368

performance, 2-4

periodogram, 6-361

PERMS, A-13

permutation, A-13

PERT distribution, 6-369

PGARCH, 6-140, 6-303

PLOT, 6-305

PLS, 6-307

POISSON, 6-269, 6-310, 6-312, 6-437

Poisson, 6-209, 6-221

Poisson distribution, 6-369

POLYDIV, A-13

POLYINV, A-14

polynomial distributed lag, 6-298

polynomial division, A-13

polynomial inversion, A-14

positive definite, 6-300

power distribution, 6-369

PQG, 6-162, 6-277, 6-305

Prais Winsten, 6-19

precision, 2-3, 6-277

prediction errors, 6-178

prediction limits, 6-125

price index, 6-82

PRIN, 6-313

principal components, 6-313

PRINT, 6-122, 6-315

print, 3-3

print – option, 5-12

printer, 6-277

probability distributions, 6-45, 6-46, 6-290,

6-328, 6-329, 6-362

probability integral transformation, 6-403

probability plot correlation, 6-405

PROBIT, 6-316, 6-322

probit, 6-208

project option menu, 2-4

project overview, 3-1

projects, 2-4

proportional hazards model, 6-64, 6-156

PUTM, 6-317

PV, 6-318

Q-Q plot, 6-405

QDFN, 6-319

QR, 6-269, 6-322, 6-437

quadratic programming, 6-242

quantal response, 6-322

quantile regression, 6-337

quasi random sequence, 6-331

quick start, 4-2

RADIX, 6-41

RADIXI, 6-41

Ramsay’s E function, 6-337

random effects model, 6-282

random sampling, 6-328, 6-329, 6-332

random truncated normal, 6-333

random utility model, 6-119, 6-225

Rayleigh distribution, 6-369

reciprocal distribution, 6-369

rectangular distribution, 6-369

recursive

coefficient, 6-407

residuals, 6-178, 6-406

RENAME, 6-327

REPL, 6-149, 6-191

reserved names, 5-2, 6-149

residuals, 6-125

response surface methodology, 6-340

RND, 6-328

RNDGEN, 6-329

RNDQRS, 6-331

Index-7

Index

RNDSMPL, 6-332

RNDTN, 6-333

ROBUST, 6-269, 6-335

robust estimation, 6-335

robust variance, 6-270

RSM, 6-340

running GAUSSX under UNIX, 4-1

running GAUSSX under Windows, 3-1

SA, 6-355

SAMA, 6-346

sample, 6-357

sample file, 6-240, 6-277

sample path, 3-3

sample selection model, 6-168

SAVE, 6-122, 6-350

save matrix, 6-317

SAVEPROC, 6-352

SCALZERO, A-14

screen, 3-3, 6-277

seasonal adjustment, 6-346

seasonal dummies, 6-84

semiparametric estimation, 6-255

serial correlation, 6-406, 6-407

SEV, 6-353

SIMANN, 6-355

simulated annealing, 6-242, 6-355

simulation, 6-211

singular value decomposition, 6-61, 6-383

skew normal distribution, 6-369

skewness, 6-419

smallest extreme value, 6-353

smallest extreme value distribution, 6-369

SMPL, 6-357

Sobol generator, 6-331

SOLVE, 6-358

SPECTRAL, 6-361

spreadsheet

files, 6-274

squared residuals, 6-125

stability of coefficients, 6-392

standardized filter, 6-114

standardized residuals, 6-125

state vectors, 6-177

static forecast, 6-125, 6-358

stationary, 6-229, 6-400

STATLIB, 6-362

Statlib reference, A-17

step distribution, 6-369

step type, 6-242

STEPWISE, 6-372

stepwise regression, 6-372

stochastic volatility model, 6-381

STORE, 6-374

structural change, 6-406

student version, 2-5

Student’s t distribution, 6-370

studentized residuals, 6-125

SURE, 6-209, 6-240, 6-376

SURVIVAL, 6-378

survival models, 6-85, 6-378

SV, 6-381

SVD, 6-383

symbolic operations, 3-6

T scaled distribution, 6-370

table lookup, A-13

TABULATE, 6-384

TEST, 6-387, 6-414

test

BKW SVD test, 6-390

Anderson-Darling normality test, 6-388

ANOVA, 6-389

Bartlett test, 6-390

Index-8

Index

Breusch-Pagan test, 6-391

Brown-Forsythe test, 6-415

CHISQ test, 6-209, 6-270

CHISQ-statistic, 6-391

Chow test, 6-392

Conover test, 6-415

CUSUM test, 6-406

CUSUMSQ test, 6-406

Davidson-MacKinnon J-test, 6-399

Dickey-Fuller test, 6-392

Durbin-Watson test, 6-270

Engle LM test, 6-390

Engle-Granger test, 6-393

F statistic, 6-394

F-test, 6-395

Friedman test, 6-416

Geweke NSE test, 6-209

Godfrey Serial Correlation test, 6-270

Granger causality test, 6-396

Hansen, 6-396

Hausman specification test, 6-397

Heteroscedasticity test, 6-270

Jarque-Bera normality test, 6-270, 6-

397

Johansen cointegration test, 6-398

Kolomogorov-Smirnov test, 6-416

KPSS test, 6-400

Kruskal-Wallis test, 6-416

Kurtosis test, 6-417

Lagrange multiplier test, 6-401

Levene test, 6-417

likelihood ratio test, 6-402

Ljung-Box Q test, 6-400

Mann-Whitney U test, 6-418

Median test, 6-418

Mood’s test, 6-418

Newey West D test, 6-403

O’Brien test, 6-418

PIT test, 6-403

PPC test, 6-405

Ramsey RESET test, 6-270

Recursive residuals, 6-406

Relative Numerical Efficiency test, 6-

209

Runs test, 6-406, 6-419

Sargan Misspecification test, 6-270

Shapiro-Francia normality test, 6-407

Shapiro-Wilks normality test, 6-408

Sign test, 6-419

Skewness test, 6-419

T-test, 6-406, 6-409

Theil’s decomposition, 6-409

Von Neumann test, 6-407

Wald test, 6-409

Walsh test, 6-420

Welch test, 6-410

Wilcoxon test, 6-407, 6-420

TGARCH, 6-140, 6-422

TIMER, 6-424

TITLE, 6-425

TOBIT, 6-426

Tobit, 6-209, 6-221

TOL, 6-240

transfer function, 6-31, 6-244

trend, 6-113, 6-149, 6-268

triangular distribution, 6-370

trivariate probit, 6-316

trouble shooting, A-15

TRUST, 6-428

trust region, 6-243, 6-428

Tukey Lambda, 6-405

Tukey’s biweight function, 6-337

two step estimation, 6-220, 6-244

Index-9

Index

uniform distribution, 6-370

unit root, 6-392

UNIX

configuration, 2-5

menu, 4-1

porting files to, 2-6

VAR, 6-430

variable names, 5-1

VARMA, 6-433

vector autoregressive estimation, 6-430

vector autoregressive moving average, 6-

433

vector decomposition, 6-409

viewer, 3-4

Von Mises distribution, 6-370

wait, A-14

WAITKEY, A-14

wavelets, 6-72

WEIBULL, 6-435

Weibull distribution, 6-370

Weibull model, 6-435

WEIGHT, 6-244, 6-270, 6-437

weighting, 6-244

WELFARE, 6-438

WHITTLE, 6-440

WINDOW, 6-442

work file, 6-350, 6-374

work path, 3-3

X12 seasonal adjustment, 6-346

XGAMMA, A-14

XPAND, A-14

Index-10

	Gaussx
	Contents
	1 Concept
	1.1 Overview

	2 Installation and Configuration
	2.1 Installing GAUSSX
	2.1.1 GAUSSX for Windows
	2.1.2 GAUSSX for UNIX and MAC
	2.1.3 Installing GAUSSX manually

	2.2 Configuring GAUSSX for Windows
	2.2.1 GAUSSX mode
	2.2.2 Precision
	2.2.3 Projects
	2.2.4 Configuration File
	2.2.5 Performance
	2.2.6 Network support
	2.2.7 Student version

	2.3 Configuring GAUSSX for UNIX
	2.3.1 UNIX configuration file
	2.3.2 Network support
	2.3.3 Porting PC files

	3 Running GAUSSX under Windows
	3.1 Quick Start
	3.2 Project Options
	3.2.1 Overview
	3.2.2 Files
	3.2.3 Options
	3.2.4 Commands
	3.2.5 Configuration
	3.2.6 Navigation

	3.3 GAUSSX Commands
	3.4 GAUSSX Tools
	3.5 Batch mode

	4 Running GAUSSX under UNIX
	4.1 UNIX menu
	4.2 Quick Start
	4.3 Batch mode

	5 GAUSSX Commands - Syntax and Summary
	5.1 Syntax
	5.2 Variable names
	5.3 Summary
	5.3.1 Data creation and handling
	5.3.2 Descriptive
	5.3.3 Formula definition
	5.3.4 Estimation methods
	5.3.5 Processes
	5.3.6 Bitwise Commands
	5.3.7 Statistical Commands
	5.3.8 Finance/Economics Commands
	5.3.9 In-Line commands
	5.3.10 Support Functions
	5.3.11 Miscellaneous

	5.4 Display Options
	5.5 Reference Syntax

	6 GAUSSX Reference
	A
	AGARCH Process
	AMORT
	ANALYZ
	ANN Process
	ANOVA
	AR
	ARCH
	ARCH Process
	ARFIMA Process
	ARIMA
	ARIMA Process
	ARMA Process

	B
	BETA_ D Process
	BITWISE

	C
	CATALOG
	CDF
	CDFI
	CDFMVN
	CLUSTER
	COMMENT
	CONST
	COPULA
	CORDIM
	CORR
	COVA
	COX Process
	CREATE
	CROSSTAB

	D
	DBDC Process
	DENOISE
	DGP
	DIVISIA
	DROP
	DUMMY
	DURATION

	E
	EGARCH Process
	END
	EQCON
	EQSUB
	EVAL
	EXPAND
	EXPON Process
	EXSMOOTH

	F
	FETCH
	FEVAL
	FIGARCH Process
	FILTER
	FIML
	FMNP Process
	FMTLIST
	FORCST
	FPF Process
	FREQ
	FRML
	FRONTIER
	FV

	G
	GAMMA_ D Process
	GARCH process
	GAUSS
	GENALG
	GENR
	GETM
	GINI
	GLOBOPT
	GOMPERTZ Process
	GMM
	GRAPH
	GROUP
	GUMBEL Process

	H
	HECKIT

	I
	IGARCH Process
	INVERT
	INVGAUSS Process

	K
	KALMAN
	KALMAN Process
	KEEP

	L
	LAG
	LHS
	#LIST
	LIST
	LOAD
	LOADPROC
	LOGISTIC Process
	LOGIT Process
	LOGLOG Process
	LOGNORM Process
	LOOP
	LP
	LYAPUNOV

	M
	MCALC
	MCMC
	MCS
	ME
	MGARCH Process
	ML
	MNL Process
	MNP Process
	MROOT
	MSM Process
	MVN Process
	MVRND

	N
	NEGBIN Process
	NFACTOR
	NLS
	NMV
	#NOLIST
	NORMAL
	NORMAL Process
	NPE
	NPR
	NUMDATE

	O
	OLS
	OPEN
	OPTION
	ORDLGT Process
	ORDPRBT Process

	P
	PAGE
	PANEL
	PARAM
	PARETO
	PDF
	PDL
	PDROOT
	PEARSON
	PGARCH Process
	PLOT
	PLS
	POISSON
	POISSON Process
	PRIN
	PRINT
	PROBIT Process
	PUTM
	PV

	Q
	QDFN
	QR

	R
	RENAME
	RND
	RNDGEN
	RNDQRS
	RNDSMPL
	RNDTN
	ROBUST
	RSM

	S
	SAMA
	SAVE
	SAVEPROC
	SEV Process
	SIMANN
	SMPL
	SOLVE
	SPECTRAL
	STATLIB
	STEPWISE
	STORE
	SURE
	SURVIVAL
	SV Process
	SVD

	T
	TABULATE
	TEST (Parametric)
	TEST (Non-Parametric)
	TGARCH Process
	TIMER
	TITLE
	TOBIT Process
	TRUST

	V
	VAR
	VARMA Process

	W
	WEIBULL Process
	WEIGHT
	WELFARE
	WHITTLE Process
	WINDOW

	#
	2SLS
	3SLS

	A Appendices
	A.1 Error Processing
	A.2 Installing New Procedures
	A.3 Mixing GAUSS and GAUSSX
	A.4 Running GAUSS Application Modules
	A.5 Automatic Differentiation
	A.6 Support Functions
	A.7 Trouble Shooting
	A.7.1 Windows
	A.7.2 UNIX

	A.8 Statlib Reference

	B Index

