
GUI Tools
Graphic User Interface for GAUSS
ECONOTRON SOFTWARE, INC.

Version 5.0

Jon Breslaw

April, 2005

The contents of this manual is subject to change without notice, and does not
represent a commitment on the part of Econotron Software, Inc. The software
described in this document is furnished under a license agreement or nondisclo-
sure agreement. The software may be used or copied only in accordance with the
terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose other than
the purchaser’s personal use without the prior written permission of Econotron
Software.
Copyright c© 2005 Econotron Software, Inc.
All Rights Reserved

GAUSS is a trademarks of Aptech Systems, Inc.

Support:
Econotron Software
447 Grosvenor Ave.
Westmount, P.Q. Canada
H3Y-2S5
Tel: (514) 939-3092
Fax: (514) 938-4994
Eml: support@econotron.com
Web: http://www.econotron.com

Contents

1 Concept 1

2 Installation and Testing 3
2.1 Installation Requirements . 3
2.2 Installing GUI Tools . 3
2.3 Testing GUI Tools . 4
2.4 GUI Tools Demo . 4

3 Program Examples 5
3.1 Structure . 5
3.2 Example 1 - A TextBox Control 6
3.3 Example 2 - A Simple GUI . 6
3.4 Example 3 - A programmed GUI 8

4 GUI Tools Command Summary 11
4.1 Summary . 11

4.1.1 GUI execution . 11
4.1.2 Programming . 11

5 GUI Tools Reference 13

6 Trouble Shooting 29

ii

Chapter 1

Concept

The underlying idea behind the development of GUI Tools was the concept of
providing an interactive graphic user interfaces for GAUSS for Windows. GAUSS
provides two intrinsic functions for interactive input - cons and con. These are
used for the interactive input of text and matrices respectively. However, these
two functions are text based, and are thus inadequate in a Windows environment.
What is missing is the ability to have an end user respond to a graphic based
dialog, with mouse control, and where the required inputs ar clearly shown, along
with prompts and default values.
GUI Tools provides exactly this functionality. It provides a range of standard, pre-
programmed interfaces for common tasks, including both controls and dialogs.
It also allows the programmer to create his/her own interface, using a graphic
builder technique - the same technique that is used to build dialogs in Visual
Basic and Visual C. The GUI is created using a form and a toolbox of controls.
The programmer clicks the required control to copy that control to the form,
and then, using the mouse, drags the control to the desired location and sizes
it. A list of properties is provided for each control, which the programmer sets
as desired. Each control is given a name, and the characteristic of that control
is saved in GAUSS under that name. Thus a text box called text1 containing
the phrase "Hello World" will be available in GAUSS as if the user had typed in
GAUSS:

text1 = "Hello World";
A fair degree of extensibility has been built into GUI Tools. At the simplest level,
GUI Tools allows for interactive input using standard controls or dialogs. At the

1

CONCEPT

more advanced level, custom interfaces can call specified procedures, and, after
completion of a procedure, control is returned back to the GUI.
The remainder of this manual describes how to install GUI Tools and run the
examples. A number of demonstration files are included, and are discussed in
depth as a way of introduction to the GUI Tools functions. A detailed description
of each function is given in the reference section.

2

Chapter 2

Installation and Testing

This chapter describes the hardware and software configuration required to run
GUI Tools on your computer, as well as instructions on using the GUI Tools
commands.

2.1 Installation Requirements
The GUI Tools for GAUSS system requirements are:

• Windows 9x, NT4, ME, 2000, or XP.
• GAUSS 4.0 or higher

2.2 Installing GUI Tools
Before you open the product package, please read the license agreement that
accompanies GUI Tools. By installing and using the product, you accept the
terms of this agreement.
The program files on the CD are compressed, so you cannot simply copy them
to your computer. Rather, you must run the installation program which decom-
presses the files and copies them to your hard disk in the appropriate directories.

3

INSTALLATION AND TESTING

1. Insert the GUI Tools CD into the appropriate drive.
2. From the Windows Start menu, chose Run.
3. Type d:\setup.exe (where d: is the letter for your CD drive).
4. Choose OK.
5. Follow the instructions on the screen.

The installation routines creates a folder called gauss\guitools which has the
following structure:

Doc This folder contains the GUI Tools help file and the GUI Tools
manual in pdf format.

Examples This folder contains example files for controls, dialogs and user
defined GUIs .

Gui This folder contains the GUI description files.

2.3 Testing GUI Tools

From the GAUSS prompt, type
run guitest.e;

This should display a welcome message in a message box.

2.4 GUI Tools Demo

From the GAUSS prompt, type
run guidemo.e;

This will consecutively execute the 18 files in gauss\guitools\examples. The ex-
ample files - gui1.e to gui18.e can serve as templates for your own code.

4

Chapter 3

Program Examples

This section shows how one programs the GUI Tools interface. This is accom-
plished by discussing three of the example files.

3.1 Structure
GUI Tools uses a structure to handle the various options. This structure is defined
as follows:
struct gstruct {

string command; ("")
string text; ("")
string title; ("")
string prompt; ("")
scalar style; (0)
scalar splash; (1)
string mode; ("run")
string gaussState; ("hidden")
string guiState; ("hidden")
string procName; ("")
string fileName; ("")

string array list; ("")
};

(defaults in parenthesis)

5

PROGRAM EXAMPLES

3.2 Example 1 - A TextBox Control
This is an example that uses the built in controls and dialogs. In this example
(gui3.e), the text entered by the user is returned.

1 library guitools;
2 #include guitools.sdf;
3 struct gstruct g0;
4 g0 = guiSet;
5
6 g0.command = textbox;
7 g0.title = "Text Box Example";
8 g0.prompt = "Enter your name";
9 name = guiRun(g0);
10
11 "Your name is: " name;

The first four lines are standard - the GUI Tools library is specified, the GUI Tools
structure gstruct is loaded from guitools.sdf, and an instance of this structure
g0 is created and initialized in guiSet.
The control type is specified in line 6, and the title and prompt in lines 7 and 8.
The GUI is run in line 9, and the contents of the text box is returned and stored
in name.

3.3 Example 2 - A Simple GUI
This example (gui13.e) demonstrates how a simple user defined interface is used.

1 library guitools;
2 #include guitools.sdf;
3 struct gstruct g0;
4 g0 = guiSet;
5
6 g0.gaussstate = normal;
7 g0.filename = guipath $+ "gt13.gui";
8 call guiRun(g0);
9

6

PROGRAM EXAMPLES

10 cls;
11 format /rd 2,0;
12 " Values returned";
13 " ";
14 " Control Name Control Value ";
15 " ";
16 " ListBox ";; varget("listbox");
17 "";
18 " Beer_c ";; varget("beer_c");
19 " Milk_c ";; varget("milk_c");
20 " Wine_c ";; varget("wine_c");
21 " Whisky_c ";; varget("whisky_c");
22 "";
23 " Beer_o ";; varget("beer_o");
24 " Milk_o ";; varget("milk_o");
25 " Wine_o ";; varget("wine_o");
26 " Whisky_o ";; varget("whisky_o");
27 "";
28 " Slider ";; varget("slider");
29 "";
30 " OK_b ";; varget("ok_b");
31 " Cancel_b ";; varget("cancel_b");
32 "";
33 " Comments:\n "; varget("comments");

This demonstrates a user defined interface. It was initailly created using the
guiNew command, creating each of the controls on the form. The GUI was then
saved as a GUI description file (gt31.gui). Each control on the form has a name,
and this name is used to store the control specific property in GAUSS. Thus,
for example, the first check box is called beer_c, and a GAUSS variable with
the same name is created, and which is set to unity if the beer_c checkbox is
checked, else zero.
Lines 1 to 4 are standard, as before. Line 6 specifies that the GAUSS window is
to stay shown while the GUI is displayed - the default is hidden. Line 7 gives the
filename of the GUI description file (gt13.gui), and the GUI is displayed in line 8.
On return, lines 10 to 33 are executed - in each case, a characteristic property
of each control is retrieved as a GAUSS variable with the name of the control,
and displayed. Thus, checkboxes, option buttons, and command buttons return
a zero or unity, depending whether the respective control is checked (or clicked),
a slider returns its value, and a listbox and textbox return a string.
Full details for each control is provided in the reference for guiRun.

7

PROGRAM EXAMPLES

3.4 Example 3 - A programmed GUI
This example (gui16.e) demonstrates how to program a GUI which calls a proc.
1 library guitools;
2 #include guitools.sdf;
3 struct gstruct g0;
4 g0 = guiSet;
5 clear _sqp_Start, _sqp_Title, _sqp_FnProc;
6
7 g0.procname = "sqp_prog";
8 g0.filename = guipath $+ "gt16.gui";
9 call guiRun(g0);
10
11 proc sqp_prog;
12 local ok,txt, guivar;
13 local x, f, lagr, ret;
14 cls;
15 ok = varget("OK_b");
16 if ok;
17 sqpSolveSet;
18 guiPut("Bounds" , "_sqp_Bounds");
19 guiPut("Start" , "_sqp_Start");
20 guiPut("FnProc" , "_sqp_FnProc")
21 guiPut("EqProc" , "_sqp_EqProc");
22 guiPut("IneqProc", "_sqp_IneqProc");

.

.

.

31 print _sqp_title;
32 { x,f,lagr,ret } = sqpSolve(_sqp_FnProc,_sqp_start);
33 call guiWait;
34 else;
35 call guiEnd;
36 endif;
37 retp("");
38 endp;
This demonstrates a GUI front end for estimation - in this case we have used sqp,
but the same concept can be used for ml or cml. As before, the GUI description
file (gt16.gui) was created using guiNew or guiEdit. The GUI requests all the

8

PROGRAM EXAMPLES

inputs that are used by sqp; and these are stored in GAUSS using the name of
the control.
Lines 1 to 4 are standard. Line 5 is needed for compilation. Line 7 specifies the
proc that is to be called when the user clicks a command button in the GUI - in
this case, sqp_prog. The GUI description file is specified in line 8, and the gui is
displayed in line 9.
After the user has clicked one of the command buttons, sqp_prog is run. The
first job is to see if the user clicked the OK button, which is called OK_b. If this
button was clicked, then unity would be stored under its name. This is tested
in line 16. sqpSolveSet is called at line 17, and then each of the values from
the GUI are stored in the appropriate sqp global, using guiPut. For example, if
the textbox called EqProc had a function specified - say &eqp, then line 21 will
assign that text to the variable _sqp_EqProc.
Optimization takes place in line 32, and a keyboard input is requested from the
user in line 33. After a key has been entered, the proc is completed, and control
is returned to the GUI, so that one can do another run.
If the OK button had not been clicked, guiEnd at line 35 would have been ex-
ecuted. This command terminates the GUI, and returns control to the GAUSS
prompt.

9

PROGRAM EXAMPLES

10

Chapter 4

GUI Tools Command
Summary

4.1 Summary
The commands are arranged alphabetically. For easy reference, a summary of
commands arranged by type is given below.

4.1.1 GUI execution
guiEdit – Modifies an existing GUI.
guiNew – Creates a new GUI.
guiRun – Executes a control, dialog or GUI.

4.1.2 Programming
guiClear – Clears an active GUI.
guiEnd – Terminates a GUI.
guiEval – Executes a string.
guiHelp – Displays the GUI Tools help file.
guiPut – Assigns control value to a symbol.
guiSet – Initializes a GUI structure.
guiWait – Wait for keyboard input.

11

GUI TOOLS COMMAND SUMMARY

12

Chapter 5

GUI Tools Reference

13

guiClear GUI TOOLS REFERENCE

Purpose
Clears an active GUI.

Format
guiClear;

Remarks
When a GUI has a proc specified in g0.procname, that proc is called when a
command button on the GUI is clicked by the user. At this stage, the GUI is not
closed (though it is usually hidden), since after the proc has been completed,
control is returned to the GUI.
However, if there is a GAUSS compile or execution error, the user is instead
returned to the GAUSS prompt with an error message, while the GUI remains
hidden. Before any further work is done in GAUSS, However, the GUI should be
terminated. This can be done by executing the guiClear command.
A GUI can also be terminated by ending the gui.exe process from the Windows
task manager.

Example

guiClear;

14

GUI TOOLS REFERENCE guiEdit

Purpose
Creates or modifies a user defined GUI .
Format

guiEdit (g0);
Inputs
g0 GUI structure.

Remarks
This command is used to create or modify a user specified GUI. An existing GUI
is specified in g0.filename. A new GUI is created by setting g0.filename =
"", or by using the guiNew command.
This command opens controls toolbox, and either a blank design form (for a new
GUI) or an existing design form. Controls are added by clicking the appropriate
control in the toolbox. The control can then be sized and/or moved using the
mouse, or by setting the top, left, height or width properties in the property
window. Other properties are set by clicking the respective property name in
the property window. Each control returns a property to GAUSS, which is stored
under the name of the control. For example, setting the name of a textbox to
algmth, and entering the string "Hello World" into the text property would
result in GAUSS storing "Hello World" in the global variable algmth when the
GUI is executed.
The GUI tools toolbox contains the following controls

Control Content returned to GAUSS

Button value, 1 if clicked, else 0.
Check Box value, 1 if checked, else 0.
Directory List string, selected folder.
Drive List string, selected drive.
File Browser string, selected file.
Frame none.
Label none.
List Box string, selected item.
Option Button value, 1 if checked, else 0.
Slider value, slider value.
Text Box string, text content.

15

guiEdit GUI TOOLS REFERENCE

A GUI is saved as an ASCII file with a .gui extension.
See the guiRun command for details on the g0 structure. An example is given
in gui18.e.

Example

library guitools;
#include guitools.sdf;
struct gstruct g0;
g0 = guiSet;

g0.filename = guipath $+ "gt13.gui";
guiEdit(g0);

In this example, an existing file (gt13.gui) is opened for modification.

See also
guiNew, guiRun

16

GUI TOOLS REFERENCE guiEnd

Purpose
Terminates a GUI.
Format

guiEnd;
Remarks
After a proc, that has been called by a GUI, has exited, control is returned
back to the GUI.Clearly, it is necessary to have a method of terminating this
process - when, for example, the user has clicked a "Cancel" button. The guiEnd
command terminates this process.
Example

g0.procname = "marshal";
g0.filename = guipath $+ "gt15.gui";
call guiRun(g0);

proc marshal;
local ok;
ok = varget("OK_b");

if ok;
txt = varget("Gauss_Text");
call guiEval(txt);
call guiWait;

else;
call guiEnd;

endif;
retp("");

endp;
In this example, the GUI calls the proc marshal when a command button is
clicked. The proc checks to see if the OK_b button was clicked - in which case
it will have a value of unity. In this case, the proc carries out the process of
evaluating the text in the text box called Gauss_Text, and then control returns
to the GUI on return from the proc. If the OK_b button was not clicked, then the
guiEnd will terminate the GUI, and return control to the GAUSS prompt.
See also

guiClear

17

guiEval GUI TOOLS REFERENCE

Purpose
Executes a string consisting of a set of GAUSS expressions.

Format
guiEval (str);

Inputs
str string, GAUSS expression.

Remarks
The guiEval command evaluates the string str as if the contents of str had
been typed in at the GAUSS prompt. This permits GAUSS to evaluate text from
a textbox control.

Example

txt = varget("Gauss_Text");
call guiEval(txt);
call guiWait;

This example shows how GAUSS statements that had been entered in the textbox
Gauss_Text can be evaluated.

See also
guiPut

18

GUI TOOLS REFERENCE guiHelp

Purpose
Displays the GUI Tools help file.

Format
guiHelp;

Remarks
This command is used to display the GUI Tools help file from GAUSS.

Example

library guitools;
guiHelp;

19

guiNew GUI TOOLS REFERENCE

Purpose
Creates a new user defined GUI .

Format
guiNew (g0);

Inputs
g0 GUI structure.

Remarks
This command is used to create a new user specified GUI.
See the guiEdit command for details on the use of the controls toolbox. An
example is given in gui17.e.

Example
library guitools;
#include guitools.sdf;
struct gstruct g0;
g0 = guiSet;

guiNew (g0);

See also
guiEdit

20

GUI TOOLS REFERENCE guiPut

Purpose
Assigns the contents of a GUI control to a GAUSS global symbol.

Format
guiPut (guistr, varname);

Inputs
guistr string, name of a GUI control.
varname string, name of a GAUSS global symbol.

Remarks
guiPut takes the contents of the control named in guistr , and assigns it to the
GAUSS variable specified in varname. The contents of guistr can be a string -
such as the content of a textbox - or a value. The only requirement is that the
contents of the control evaluate to a valid GAUSS expression.

Example

guiPut("Bounds", "_sqp_Bounds");

In this example, the GUI contains a textbox named Bounds. Assume that this
textbox contained the string { 2 3 4, 1 0 1}. The guiPut command is equiv-
alent to the GAUSS command:

_sqp_Bounds = { 2 3 4, 1 0 1};

See also
guiEval

21

guiRun GUI TOOLS REFERENCE

Purpose
Executes a control or a user defined GUI .
Format

guiRun (g0);
Inputs
g0 GUI structure.

Outputs
rslt Return value or string.

Remarks
This command is used to execute a control, a dialog, or a user specified GUI.
Controls and dialogs are prespecifed, and can be called directly, while user spec-
ified GUIs must first be created using guiEdit or guiNew before being executed.
The input arguments of the guiRun command are specified within the structure
g0 . This structure has the following elements:

g0.command string.
g0.filename string.
g0.gaussstate string.
g0.guistate string.
g0.list string array.
g0.mode string.
g0.procname string.
g0.prompt string.
g0.splash scalar.
g0.style scalar.
g0.text string.
g0.title string.

An instance of the GUI structure is specified at the beginning of the GAUSS
command file:

library guitools;
#include guitools.sdf;
struct gstruct g0;
g0 = guiSet;

22

GUI TOOLS REFERENCE guiRun

This code creates a structure g0 of type gstruct, and initializes it in guiSet.
Before calling guiRun, the elements of g0 that are required should be specified.
g0.command This string specifies the type of control that is to be displayed.

The following controls are supported:
checkbox A check box control. The list of entries is specified in

g0.list. Returns a vector with unity elements for checked
items, and zero for non-checked items.

colordlg A color selector dialog. Returns the numeric expression for
the selected color.

combobox A combo box control. The list of entries is specified in
g0.list. Returns the selected element as a string.

filedlg A file browser dialog. Returns a string containing the se-
lected file.

fontdlg A font selector dialog. Returns a string array containing
information on the selected font:

Row Value.
1 Font name
2 Font color
3 Font size
4 Bold
5 Italic
6 Strikeout
7 Underline

gaussbox A predefined GUI for GAUSS.
loginbox A login control. The user name is specified in g0.text,

and the password in g0.prompt. Returns the string OK if
successful, and Cancel otherwise.

msgbox Amessage box control. The message is specified in g0.text
or g0.prompt. The button style is specified in g0.style -
see below. Returns a string containing the caption of the
button that was clicked.

optionbox An option box (or radio box) control. The list of entries
is specified in g0.list. Only one option can be selected.
Returns the element number of the selected item.

printdlg A print dialog control. The text to be printed is specified
in g0.text, or a filename in g0.filename. Returns unity
if successful, else zero if canceled.

23

guiRun GUI TOOLS REFERENCE

textbox A text control. Returns the string entered by the user.
g0.filename This string specifies the filename for user specified GUI description

files. These files are created using guiEdit, and read using guiRun. A
global, guipath, specifies the path of the gauss\guitools\gui folder.

g0.gaussstate When the GUI is displayed, the user can specify how GAUSS
should be displayed. The options are normal, hidden, minimize, and
maximize. The default is hidden.

g0.guistate When a procedure is specified in g0.procname, the GUI persists
while GAUSS executes the proc. The user can specify how the GUI should
be displayed. The options are normal, hidden, minimize, and maximize.
The default is hidden.

g0.list This consists of a list of items specified in a string array, and is used by
the checkbox, combobox, and optionbox controls.

g0.procname This string specifies the procname that will be called by the user
specified GUI when a command button is clicked. This proc acts to control
the flow of events - the events called from the proc will depend on the settings
returned from the GUI. When the proc is completed, control is returned
to the GUI, unless guiEnd is called. Thus, typically, if an OK button is
clicked, the procedure executes the desired events, while if a Cancel button
is clicked, the procedure executes guiEnd and returns to the GAUSS prompt.
If procname is an empty string, no procedure will be called.

g0.prompt This consists of a string that is used in a number of controls.
g0.splash When a GUI with many controls is called, a splash screen is displayed

while the GUI is loaded. The default is g0.splash = on.
g0.style This scalar specifies the button style for msgbox controls.

Value Button Style.
0 OK
1 OK and Cancel
2 Abort, Retry, and Ignore
3 Yes, No, and Cancel
4 Yes and No
5 Retry and Cancel

g0.text This consists of a string that is used in a number of controls.
g0.title This consists of a string that is used as the caption for each control.

24

GUI TOOLS REFERENCE guiRun

Examples of calls to controls are given in gui1.e - gui7.e, and calls to dialogs are
in gui8.e - gui11.e. Examples of executing a user defined GUI are provided in
gui13.e - gui15.e.

Example

library guitools;
#include guitools.sdf;
struct gstruct g0;
g0 = guiSet;

g0.filename = guipath $+ "gt13.gui";
call guiRun(g0);

In this example, an existing file (gt13.gui) is displayed.

See also
guiEdit, guiNew

25

guiSet GUI TOOLS REFERENCE

Purpose
Initialize an instance of a GUI structure.

Format
g0 = guiSet;

Outputs
g0 a GUI structure.

Remarks
This command inializes the entries of a gstruct structure at the default values.
This command should be called prior to issuing other GUI Tools commands.

Example

library guitools;
#include guitools.sdf;
struct gstruct g0;
g0 = guiSet;

This example shows the standard code for a GUI Tools command file. The #in-
clude statement provides the gstruct definition. g0 is an instance of gstruct,
and is initialized using the guiSet statement.

26

GUI TOOLS REFERENCE guiWait

Purpose
Prompts for a key input.

Format

guiWait;

Remarks
This command prompts the user for a keyboard input. It provides an escape
facility, and so should be used (instead of call keyw) within a proc that is
called by a user defined GUI.

Example

proc browser;
local ok;
ok = varget("ok_b");
if ok;

" FileName ";; varget("Filename");
call guiWait;

else;
call guiEnd;

endif;
retp("");

endp;

This example shows the use of guiWait within a proc called by a GUI .

27

guiWait GUI TOOLS REFERENCE

28

Chapter 6

Trouble Shooting

• mercurysm not found.
The file mercurysm.dll should exist on the gauss\guitools folder. Option-
ally, it can also exist on the gauss\dlib folder.

• Application hangs during GAUSS execution
This will usually occur under the following circumstances:
1. GAUSS is waiting for a keyboard entry. Restore the GAUSS window, and

enter the required key.
2. GAUSS is looping. Close the GAUSSwindow. The GUI will still hang, and

must be closed using the Windows task manager. The GUI application
is called Gui for GAUSS, and the process is called gui.exe. After exiting
GAUSS, check that the gauss.exe process has terminated.

3. A GAUSS error has occurred - for example matrices are not conformable.
Restore the GAUSS window, and from the GAUSS prompt type:
guiClear; enter

4. GAUSS can be closed while waiting for the GUI by typing F12.
• Cannot size slider control.
This is a known bug. Use the properties Height and Width to size the
control.

29

TROUBLE SHOOTING

30

Index

checkbox 22
color 22
combobox 22
commands

— guiClear 14
— guiEdit 15
— guiEnd 17
— guiEval 18
— guiHelp 19
— guiNew 20
— guiPut 21
— guiRun 22
— guiSet 26
— guiWait 27
— summary 11

demo 4
file browser 23
font browser 23
gaussbox 23
GUI structure 5
installation 3
loginbox 23
messagebox 23
optionbox 23
printdlg 23

testing 4
textbox 24
trouble shooting 29

	GUI Tools
	Contents
	Concept
	Installation and Testing
	Installation Requirements
	Installing GUI Tools
	Testing GUI Tools
	GUI Tools Demo

	Program Examples
	Structure
	Example 1 - A Textbox Control
	Example 2 - A Simple Gui
	Example 3 - A Programmed GUI

	GUI Tools Command Summary
	Summary
	GUI Execution
	Programming

	GUI Tools Reference
	guiClear
	guiEdit
	guiEnd
	guiEval
	guiHelp
	guiNew
	guiPut
	guiRun
	guiSet
	guiWait

	Trouble Shooting
	Index

